Problem

Source: BMO Shortlist 2017 G4

Tags: geometry, reflection, Euler Circle, Nine Point Circle, IMO Shortlist



The acuteangled triangle $ABC$ with circumcenter $O$ is given. The midpoints of the sides $BC, CA$ and $AB$ are $D, E$ and $F$ respectively. An arbitrary point $M$ on the side $BC$, different of $D$, is choosen. The straight lines $AM$ and $EF$ intersects at the point $N$ and the straight line $ON$ cut again the circumscribed circle of the triangle $ODM$ at the point $P$. Prove that the reflection of the point $M$ with respect to the midpoint of the segment $DP$ belongs on the nine points circle of the triangle $ABC$.