Problem

Source: All-Russian Math Olympiad 2019

Tags: ARMO



Find minimal natural $n$ for which there exist integers $a_1, a_2,\ldots, a_n$ such that quadratic trinom $$x^2-2(a_1+a_2+\cdots+a_n)^2x+(a_1^4+a_2^4+\cdots+a_n^4+1)$$has at least one integral root.