Problem

Source:

Tags: combinatorics, winning strategy



$3.$ Let $S$ be the set of all positive integers from $1$ to $100$ included. Two players play a game. The first player removes any $k$ numbers he wants, from $S$. The second player's goal is to pick $k$ different numbers, such that their sum is $100$. Which player has the winning strategy if : $a)$ $k=9$? $b)$ $k=8$?