Problem

Source: 2019 Czech-Polak-Slovak P4

Tags: algebra, function



Given a real number $\alpha$, find all pairs $(f,g)$ of functions $f,g :\mathbb{R} \to \mathbb{R}$ such that $$xf(x+y)+\alpha \cdot yf(x-y)=g(x)+g(y) \;\;\;\;\;\;\;\;\;\;\; ,\forall x,y \in \mathbb{R}.$$