Problem

Source: SMO Open 2019 Q4

Tags: number theory, prime numbers, algebra, polynomial



Let $p \equiv 2 \pmod 3$ be a prime, $k$ a positive integer and $P(x) = 3x^{\frac{2p-1}{3}}+3x^{\frac{p+1}{3}}+x+1$. For any integer $n$, let $R(n)$ denote the remainder when $n$ is divided by $p$ and let $S = \{0,1,\cdots,p-1\}$. At each step, you can either (a) replaced every element $i$ of $S$ with $R(P(i))$ or (b) replaced every element $i$ of $S$ with $R(i^k)$. Determine all $k$ such that there exists a finite sequence of steps that reduces $S$ to $\{0\}$. Proposed by fattypiggy123