Problem

Source: RMM Shortlist 2017 A1

Tags: algebra, Binary operation, set, cardinality



A set $A$ is endowed with a binary operation $*$ satisfying the following four conditions: (1) If $a, b, c$ are elements of $A$, then $a * (b * c) = (a * b) * c$ , (2) If $a, b, c$ are elements of $A$ such that $a * c = b *c$, then $a = b$ , (3) There exists an element $e$ of $A$ such that $a * e = a$ for all $a$ in $A$, and (4) If a and b are distinct elements of $A-\{e\}$, then $a^3 * b = b^3 * a^2$, where $x^k = x * x^{k-1}$ for all integers $k \ge 2$ and all $x$ in $A$. Determine the largest cardinality $A$ may have. proposed by Bojan Basic, Serbia