Problem

Source: INAMO Shortlist 2015 C6

Tags: combinatorics, Integer sequence



Let $k$ be a fixed natural number. In the infinite number of real line, each integer is colored with color ..., red, green, blue, red, green, blue, ... and so on. A number of flea settles at first at integer points. On each turn, a flea will jump over the other tick so that the distance $k$ is the original distance. Formally, we may choose $2$ tails $A, B$ that are spaced $n$ and move $A$ to the different side of $B$ so the current distance is $kn$. Some fleas may occupy the same point because we consider the size of fleas very small. Determine all the values of $k$ so that, whatever the initial position of the ticks, we always get a position where all ticks land on the same color.