Let $ABC$ be an acute triangle with circumcenter $O$, on the sides $BC, CA$ and $AB$ they take the points $D, E$ and $F$, respectively, in such a way that $BDEF$ is a parallelogram. Supposing that $DF^2 = AE\cdot EC <\frac{AC^2}{4}$ show that the circles circumscribed to the triangles $FBD$ and $AOC$ are tangent.