Suppose that the natural number $a, b, c, d$ satisfy the equation $a^ab^{a + b} = c^cd^{c + d}$. (a) If gcd $(a, b) = $ gcd $(c, d) = 1$, prove that $a = c$ and $b = d$. (b) Does the conclusion $a = c$ and $b = d$ apply, without the condition gcd $(a, b) = $ gcd $(c, d) = 1$?
Problem
Source: INAMO Shortlist 2015 N4
Tags: number theory, Exponential equation, exponential, greatest common divisor, Diophantine equation