Problem

Source: Peru IMO TST 2017 p11

Tags: geometry, circumcircle, equal angles, orthocenter



Let $ABC$ be an acute and scalene of circumcircle $\Gamma$ and orthocenter $H$. Let $A_1,B_1,C_1$ be the second intersection points of the lines $AH, BH, CH$ with $\Gamma$, respectively. The lines that pass through $A_1,B_1,C_1$ and are parallel to $BC,CA, AB$ intersect again to $\Gamma$ at $A_2,B_2,C_2$, respectively. Let $M$ be the intersection point of $AC_2$ and $BC_1, N$ the intersection point of $BA_2$ and $CA_1$, and $P$ the intersection point of $CB_2$ and $AB_1$. Prove that $\angle MNB = \angle AMP$ .