Points $ X $ and $ Y $ are the midpoints of the sides $ AB $ and $ AC $ of the triangle $ ABC $, $ I $ is the center of its inscribed circle, $ K $ is the point of tangency of the inscribed circles with side $ BC $. The external angle bisector at the vertex $ B $ intersects the line $ XY $ at the point $ P $, and the external angle bisector at the vertex of $ C $ intersects $ XY $ at $ Q $. Prove that the area of the quadrilateral $ PKQI $ is equal to half the area of the triangle $ ABC $.