Point $ O $ is the center of the circumscribed circle of an acute triangle $ Abc $. A certain circle passes through the points $ B $ and $ C $ and intersects sides $ AB $ and $ AC $ of a triangle. On its arc lying inside the triangle, points $ D $ and $ E $ are chosen so that the segments $ BD $ and $ CE $ pass through the point $ O $. Perpendicular $ DD_1 $ to $ AB $ side and perpendicular $ EE_1 $ to $ AC $ side intersect at $ M $. Prove that the points $ A $, $ M $ and $ O $ lie on the same straight line.