In a circle there are $2019$ plates, on each lies one cake. Petya and Vasya are playing a game. In one move, Petya points at a cake and calls number from $1$ to $16$, and Vasya moves the specified cake to the specified number of check clockwise or counterclockwise (Vasya chooses the direction each time). Petya wants at least some $k$ pastries to accumulate on one of the plates and Vasya wants to stop him. What is the largest $k$ Petya can succeed?