Problem

Source: St. Petersburg 2019 10.4

Tags: geometry, circumcircle, Centroid, equal angles



Given a convex quadrilateral $ABCD$. The medians of the triangle $ABC$ intersect at point $M$, and the medians of the triangle $ACD$ at point$ N$. The circle, circumscibed around the triangle $ACM$, intersects the segment $BD$ at the point $K$ lying inside the triangle $AMB$ . It is known that $\angle MAN = \angle ANC = 90^o$. Prove that $\angle AKD = \angle MKC$.