Problem

Source:

Tags:



A positive integer $n$ is given. A cube $3\times3\times3$ is built from $26$ white and $1$ black cubes $1\times1\times1$ such that the black cube is in the center of $3\times3\times3$-cube. A cube $3n\times 3n\times 3n$ is formed by $n^3$ such $3\times3\times3$-cubes. What is the smallest number of white cubes which should be colored in red in such a way that every white cube will have at least one common vertex with a red one.

HIDE: thanks Thanks to the user Vlados021 for translating the problem.