Problem

Source: Greece JBMO TST 2019 p1

Tags: geometry, Concyclic, circumcircle, perpendicular



Consider an acute triangle $ABC$ with $AB>AC$ inscribed in a circle of center $O$. From the midpoint $D$ of side $BC$ we draw line $(\ell)$ perpendicular to side $AB$ that intersects it at point $E$. If line $AO$ intersects line $(\ell)$ at point $Z$, prove that points $A,Z,D,C$ are concyclic.