Problem

Source: Benelux MO 2019 P2

Tags: combinatorics



Pawns and rooks are placed on a $2019\times 2019$ chessboard, with at most one piece on each of the $2019^2$ squares. A rook can see another rook if they are in the same row or column and all squares between them are empty. What is the maximal number $p$ for which $p$ pawns and $p+2019$ rooks can be placed on the chessboard in such a way that no two rooks can see each other?