Problem

Source: Caucasus 2015 9.5

Tags: number theory, combinatorics, palindromes, sum of digits



Let's call a natural number a palindrome, the decimal notation of which is equally readable from left to right and right to left (decimal notation cannot start from zero; for example, the number $1221$ is a palindrome, but the numbers $1231, 1212$ and $1010$ are not). Which palindromes among the numbers from $10,000$ to $999,999$ have an odd sum of digits, which have an one even, and how many times are the ones with odd sum more than the ones with the even sum?