Problem

Source: Saint Petersburg 2019

Tags: geometry



Let $\omega$ and $O$ be respectively the circumcircle and the circumcenter of a triangle $ABC$. The line $AO$ intersects $\omega$ second time at $A'$. $M_B$ and $M_C$ are the midpoints of $AC$ and $AB$, respectively. The lines $A'M_B$ and $A'M_C$ intersect $\omega$ secondly at points $B'$ and $C$, and also intersect $BC$ at points $D_B$ and $D_C$, respectively. The circumcircles of $CD_BB'$ and $BD_CC'$ intersect at points $P$ and $Q$. Prove that $O$, $P$, $Q$ are collinear. (М. Германсков)

HIDE: Thanks Thanks to the user Vlados021 for translating the problem.