Problem

Source: 2019 Saint Petersburg

Tags: geometry, perimeter



A non-equilateral triangle $\triangle ABC$ of perimeter $12$ is inscribed in circle $\omega$ .Points $P$ and $Q$ are arc midpoints of arcs $ABC$ and $ACB$ , respectively. Tangent to $\omega$ at $A$ intersects line $PQ$ at $R$. It turns out that the midpoint of segment $AR$ lies on line $BC$ . Find the length of the segment $BC$. (А. Кузнецов)