Problem

Source: EGMO 2019 P5

Tags: floor function, inequalities, algorithm, combinatorics, EGMO 2019



Let $n\ge 2$ be an integer, and let $a_1, a_2, \cdots , a_n$ be positive integers. Show that there exist positive integers $b_1, b_2, \cdots, b_n$ satisfying the following three conditions: $\text{(A)} \ a_i\le b_i$ for $i=1, 2, \cdots , n;$ $\text{(B)} \ $ the remainders of $b_1, b_2, \cdots, b_n$ on division by $n$ are pairwise different; and $\text{(C)} \ $ $b_1+b_2+\cdots b_n \le n\left(\frac{n-1}{2}+\left\lfloor \frac{a_1+a_2+\cdots a_n}{n}\right \rfloor \right)$ (Here, $\lfloor x \rfloor$ denotes the integer part of real number $x$, that is, the largest integer that does not exceed $x$.)