Problem

Source: IV Caucasus Mathematic Olympiad

Tags: number theory



Determine if there exist pairwise distinct positive integers $a_1,a_2,\ldots,a_{101}$, $b_1$, $b_2$, \ldots, $b_{101}$ satisfying the following property: for each non-empty subset $S$ of $\{1,2,\ldots,101\}$ the sum $\sum\limits_{i\in S}a_i$ divides $\left( 100!+\sum\limits_{i\in S}b_i \right)$.