Problem

Source: IV Caucasus Mathematic Olympiad

Tags: trigonometry, Law of Sines, geometry



Given a triangle $ABC$ with $BC=a$, $CA=b$, $AB=c$, $\angle BAC = \alpha$, $\angle CBA = \beta$, $\angle ACB = \gamma$. Prove that $$ a \sin(\beta-\gamma) + b \sin(\gamma-\alpha) +c\sin(\alpha-\beta) = 0.$$