Problem

Source: 2011 Sharygin Geometry Olympiad Correspondence Round P23

Tags: geometry, Nine Point Circle, projections, midpoints, Circumcenter, collinear



Given are triangle $ABC$ and line $\ell$ intersecting $BC, CA$ and $AB$ at points $A_1, B_1$ and $C_1$ respectively. Point $A'$ is the midpoint of the segment between the projections of $A_1$ to $AB$ and $AC$. Points $B'$ and $C'$ are defined similarly. (a) Prove that $A', B'$ and $C'$ lie on some line $\ell'$. (b) Suppose $\ell$ passes through the circumcenter of $\triangle ABC$. Prove that in this case $\ell'$ passes through the center of its nine-points circle. M. Marinov and N. Beluhov