Problem

Source: 2011 Sharygin Geometry Olympiad Correspondence Round P21

Tags: geometry, Chords, midpoints, arc midpoint, arc, concurrency, concurrent



On a circle with diameter $AC$, let $B$ be an arbitrary point distinct from $A$ and $C$. Points $M, N$ are the midpoints of chords $AB, BC$, and points $P, Q$ are the midpoints of smaller arcs restricted by these chords. Lines $AQ$ and $BC$ meet at point $K$, and lines $CP$ and $AB$ meet at point $L$. Prove that lines $MQ, NP$ and $KL$ concur.