Problem

Source: Greek tst 2018

Tags: geometry proposed, Power of Point, homothety, geometry



A triangle $ABC$ is inscribed in a circle $(C)$ .Let $G$ the centroid of $\triangle ABC$ . We draw the altitudes $AD,BE,CF$ of the given triangle .Rays $AG$ and $GD$ meet (C) at $M$ and $N$.Prove that points $ F,E,M,N $ are concyclic.