Problem

Source: 2019 China TST Test 3 P6

Tags: combinatorics, graph theory



Given positive integers $d \ge 3$, $r>2$ and $l$, with $2d \le l <rd$. Every vertice of the graph $G(V,E)$ is assigned to a positive integer in $\{1,2,\cdots,l\}$, such that for any two consecutive vertices in the graph, the integers they are assigned to, respectively, have difference no less than $d$, and no more than $l-d$. A proper coloring of the graph is a coloring of the vertices, such that any two consecutive vertices are not the same color. It's given that there exist a proper subset $A$ of $V$, such that for $G$'s any proper coloring with $r-1$ colors, and for an arbitrary color $C$, either all numbers in color $C$ appear in $A$, or none of the numbers in color $C$ appear in $A$. Show that $G$ has a proper coloring within $r-1$ colors.