Problem

Source: Canada 2019 Problem 4

Tags: absolute value, inequalities, n-variable inequality



Prove that for $n>1$ and real numbers $a_0,a_1,\dots, a_n,k$ with $a_1=a_{n-1}=0$, \[|a_0|-|a_n|\leq \sum_{i=0}^{n-2}|a_i-ka_{i+1}-a_{i+2}|.\]