Problem

Source: 2018 Brazil 4th TST Day 2 #5

Tags: algebra, polynomial



Prove: there are polynomials $S_1, S_2, \ldots$ in the variables $x_1, x_2, \ldots,y_1, y_2,\ldots$ with integer coefficients satisfying, for every integer $n \ge 1$, $$\sum_{d \mid n} d \cdot S_d ^{n/d}=\sum_{d \mid n} d \cdot (x_d ^{n/d}+y_d ^{n/d}) \quad (*)$$Here, the sums run through the positive divisors $d$ of $n$. For example, the first two polynomials are $S_1 = x_1 + y_1$ and $S_2 = x_2 + y_2 - x_1y_1$, which verify identity $(*)$ for $n = 2$: $S_1^2 + 2S_2 = (x_1^2 + y_1^2) + 2 \cdot(x_2 + y_2)$.