Problem

Source: 2019 Olympic Revenge #5

Tags: function, number theory, prime numbers, modular arithmetic



Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by $$f(n) = \sum \frac{(1+\sum_{i=1}^{n} t_i)!}{(1+t_1) \cdot \prod_{i=1}^{n} (t_i!) }$$where the sum runs through all $n$-tuples such that $\sum_{j=1}^{n}j \cdot t_j=n$ and $t_j \ge 0$ for all $1 \le j \le n$. Given a prime $p$ greater than $3$, prove that $$\sum_{1 \le i < j <k \le p-1 } \frac{f(i)}{i \cdot j \cdot k} \equiv \sum_{1 \le i < j <k \le p-1 } \frac{2^i}{i \cdot j \cdot k} \pmod{p}.$$