Problem

Source: 2019 Greece National Olympiad

Tags: geometry



Let $ABC$ be a triangle with $AB<AC<BC$.Let $O$ be the center of it's circumcircle and $D$ be the center of minor arc $\overarc{AB}$.Line $AD$ intersects $BC$ at $E$ and the circumcircle of $BDE$ intersects $AB$ at $Z$ ,($Z\not=B$).The circumcircle of $ADZ$ intersects $AC$ at $H$ ,($H\not=A$),prove that $BE=AH$.