Given a sequence of positive real numbers such that $a_{n+2}=\frac{2}{a_{n+1}+a_{n}}$.Prove that there are two positive real numbers $s,t$ such that $s \le a_n \le t$ for all $n$
Source: Moldova egmo tst 2019
Tags: algebra
Given a sequence of positive real numbers such that $a_{n+2}=\frac{2}{a_{n+1}+a_{n}}$.Prove that there are two positive real numbers $s,t$ such that $s \le a_n \le t$ for all $n$