The incircle $\omega$ of triangle $ABC$ touches the sides $BC$, $CA$ and $AB$ at points $D$, $E$ and $F$ respectively. The perpendicular from $E$ to $DF$ meets $BC$ at point $X$, and the perpendicular from $F$ to $DE$ meets $BC$ at point $Y$. The segment $AD$ meets $\omega$ for the second time at point $Z$. Prove that the circumcircle of the triangle $XYZ$ touches $\omega$.
Rather straightforward.
Claim: $EFXY$ is cyclic
Proof.
\[\angle EFY = 90^{\circ} - \angle FED = 90^{\circ} - \angle FDX = \angle EXY\qquad\square\]
Let $T$ be the intersection point of $BC$ and $EF$.
Note that $ZEDF$ is harmonic since $AD$ is the $D$-symmedian of $\triangle DEF$. Therefore, $TZ$ is tangent to $\omega$.
Therefore,
\[TX\cdot TY = TE\cdot TF = TZ^2.\]Thus, $TZ$ is also tangent to $(XYZ)$.
Hence $\omega$ and $(XYZ)$ are tangent with common tangent $TZ$.
AlastorMoody wrote:
We'll use Cartesian Coordinates to give a proof for this claim! Set $EH_1$ as the $Y-
$axis and $DF$ as the $X-$axis
Set $D \equiv (c,0)$ and $F \equiv (b,0)$ and WLOG, we can safely assume $E \equiv (0,1)$, because just magnification of the triangle won't change the configuration and won't affect our calculations and Let $b,c \in R$
Since, $H_1$ is the origin, hence, $H_1 \equiv (0,0)$ and really easy to see that the equation of the perpendicular bisector of $DF$ is $x=\frac{b+c}{2}$
$I$ lies on the perpendicular bisector of $DF$: Proof uses the fact that, $BFID$ is cyclic $\Longrightarrow$ $\angle IFD=\angle IDF=\frac{1}{2}\angle ABC$,
Using this fact, $I \equiv \left( \frac{b+c}{2} ,y \right) $, we need to calculate the y coordinate of $I$
$\textbf{\underline{Coordinate for I}}$: We know $I\equiv \left( \frac{b+c}{2} , y \right)$, Since $I$ is the circumcenter of $\omega$, therefore, $EI=DI$, hence, by distance formula we get the following:
$$EI=DI$$$$\sqrt{\left( \frac{b+c}{2} +0 \right) ^2 +(y-1)^2}=\sqrt{ \left( \frac{b+c}{2} -c \right) ^2 +y^2 }$$And after simplifying this gives $\Longrightarrow$ $y=\frac{bc+1}{2}$, Hence, the coordinate for $I$ is
$$I \equiv \left( \frac{b+c}{2} ,\frac{bc+1}{2} \right) $$
We'll use this notation to represent the equation of line throughout the solution: For a line $XY$ with equation $ax+by+c=0$ will be represented as
$$XY : ax+by+c=0$$
\end{flushleft}
\begin{flushleft}
We'll use the famous formula from coordinate geometry to find out the equation of line when the coordinates for two points on it is given, The formula is as follows:
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 1}}: If $X \equiv (x_1,y_1)$ and $Y \equiv (x_2,y_2)$, then,
$$XY: \frac{y-y_1}{y_1-y_2}=\frac{x-x_1}{x_1-x_2}$$Which can be re-written as:
$$XY: \frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$
\end{flushleft}
\par
\textbf{\underline{Equation for line IE}}: We know that the coordinate for $I \equiv \left( \frac{b+c}{2} ,\frac{bc+1}{2} \right)$ and $E \equiv (0,1)$, Hence,
$$IE: \frac{y-1}{\frac{bc+1}{2}-1}=\frac{x-0}{\frac{b+c}{2}-0}$$$$IE: y-1=x\left( \frac{bc-1}{b+c} \right)$$
$$IE: y=1+\left( \frac{bc-1}{b+c} \right) x $$
\par
\textbf{\underline{Equation for line IF}}: We know that the coordinate for $I \equiv \left(\frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $F \equiv (b,0)$, Hence,
$$IF : \frac{y-0}{\frac{bc+1}{2}-0}=\frac{x-b}{\frac{b+c}{2}-b}$$$$IF : y=\left(\frac{x-b}{\frac{c-b}{2}} \right) \left( \frac{bc+1}{2} \right)$$$$IF : y=\left( \frac{bc+1}{c-b} \right) x +\frac{b^2c+b}{b-c}$$
\textbf{\underline{Equation for line ID}}: We know that the coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $D \equiv (c,0)$, Hence,
$$ID : \frac{y-0}{\frac{bc+1}{2}-0}=\frac{x-c}{\frac{b+c}{2}-c}$$$$ID : y=\left( \frac{x-c}{\frac{b-c}{2}} \right) \left( \frac{bc+1}{2} \right)$$$$ID : y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $$
\par
\begin{flushleft}
Note that, $AC \perp EI$, $AB \perp IF$ and $BC \perp ID$
\end{flushleft}
\par
\begin{flushleft}
We'll use the famous formula from coordinate geometry to find out the slope of line when the coordinates of two points lying on the line are given, The formula is as follows:
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 2}}: If $X \equiv (x_1,y_1)$ and $Y \equiv (x_2,y_2)$ and Let $m_{XY}$ represent the slope of the line $XY$, then,
$$m_{XY}=\frac{y_1-y_2}{x_1-x_2}$$\end{flushleft}
\textbf{\underline{Slope for IF}}: The coordinate for $I \equiv \left(\frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $F \equiv (b,0)$
$$m_{IF}=\frac{\frac{bc+1}{2}-0}{\frac{b+c}{2}-b}$$$$m_{IF}=\frac{bc+1}{c-b}$$
\textbf{\underline{Slope for IE}}: The coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $E \equiv (0,1)$
$$m_{IE}=\frac{\frac{bc+1}{2} -1}{\frac{b+c}{2}-0}$$$$m_{IE}=\frac{bc-1}{b+c}$$
\textbf{\underline{Slope for ID}}: The coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $D \equiv (c,0)$
$$m_{ID}=\frac{\frac{bc+1}{2}-0}{\frac{b+c}{2}-c}$$$$m_{ID}=\frac{bc+1}{b-c}$$
\begin{flushleft}
We'll state another famous result from coordinate geometry
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 3}}: If $X_1Y_1$ and $X_2Y_2$ are perpendicular to each other, then,
$$m_{X_1Y_1} \cdot m_{X_2Y_2}=-1$$\par
\end{flushleft}
\par
\textbf{\underline{Slope for AB}}: Applying Formula 3
$$m_{AB}=\frac{b-c}{bc+1}$$
\textbf{\underline{Slope for BC}}: Applying Formula 3
$$m_{BC}=\frac{c-b}{bc+1}$$
\textbf{\underline{Slope for AC}}: Applying Formula 3
$$m_{AC}=\frac{-(b+c)}{bc-1}$$
\begin{flushleft}
We'll state another well known formula from coordinate geometry to find out the equation of line when the coordinates for a point lying on the line and the slope of line is given
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 4}}: If $X_1 \equiv (x_1,y_1)$ lies on $\ell$ and $m_{\ell}$ is the slope of $\ell$, then,
$$\ell : y-y_1=m_{\ell} (x-x_1)$$\end{flushleft}
\textbf{\underline{Equation for line AB}}: $F$ lies on $AB$ and $F \equiv (b,0)$ Hence,
$$AB: y-0=\left( \frac{b-c}{bc+1} \right) (x-b)$$$$AB: y=\left( \frac{b-c}{bc+1} \right) (x-b)$$
\textbf{\underline{Equation for line BC}}: $D$ lies on $BC$ and $D \equiv (c,0)$
$$BC: y-0=\left( \frac{c-b}{bc+1} \right) (x-c)$$$$BC: y=\left( \frac{c-b}{bc+1} \right) (x-c)$$
\textbf{\underline{Equation for line AC}}: $E$ lies on $AC$ and $E \equiv (0,1)$
$$AC: y-1=\frac{-(b+c)}{bc-1} (x-0)$$$$AC: y=1-x\left( \frac{b+c}{bc-1} \right)$$
\textbf{\underline{Coordinate for X}}: now recall that $H_1$ is the feet of perpendicular from $E$ to $DF$ and $EH_1 \cap BC=X$ and also, $EH_1$ is the y-axis, and hence, x- coordinate for $X$ is $0$ $\Longrightarrow$ $X \equiv (0,y)$ and since, $X \in BC$, we have,
$$BC:y=\left( \frac{c-b}{bc+1} \right) (x-c)$$$$y=-c \left( \frac{c-b}{bc+1} \right)$$$$y=\frac{bc-c^2}{bc+1}$$$$\Longrightarrow X \equiv \left( 0, \frac{bc-c^2}{bc+1} \right)$$
\textbf{\underline{Equation for line DE}}: Recall, $D \equiv (c,0)$ and $E \equiv (0,1)$, Hence, using Formula 1,
$$DE:\frac{y-0}{1-0}=\frac{x-c}{0-c}$$$$DE: y=1-\frac{x}{c}$$
\textbf{\underline{Equation for line EF}}: Recall, $E \equiv (0,1)$ and $F \equiv (b,0)$, Hence, using Formula 1,
$$EF: \frac{y-0}{1-0}=\frac{x-b}{0-b}$$$$EF: y=1-\frac{x}{b}$$
\textbf{\underline{Slope for DE}}: $D \equiv (c,0)$ and $E \equiv (0,1)$,
$$m_{DE}=\frac{0-1}{c-0}$$$$m_{DE}=\frac{-1}{c}$$
\textbf{\underline{Equation for line $FH_2$}}: $F \equiv (b,0)$ Notice, $FH_2 \perp ED$, hence,
$$m_{FH_2} \cdot m_{DE}=-1$$$$m_{FH_2}=c$$And since, $F$ lies on $FH_2$, therefore,
$$FH_2 : y-0=c(x-b)$$$$FH_2 : y=c(x-b)$$
\textbf{\underline{Coordinate for Y}}: Recall $FH_2 \cap BC=Y$, we have, $FH_2 : y=c(x-b)$ and $BC: y=\left( \frac{c-b}{bc+1} \right) (x-c)$, Hence, solving equations: should yield coordinates for $Y$
$$FH_2 : y=c(x-b) -----(1)$$$$BC: y=\left( \frac{c-b}{bc+1} \right) (x-c) ------(2)$$
Equating $(1)$ and $(2)$, we have,
$$c(x-b)=\frac{(c-b)(x-c)}{bc+1}$$$$\frac{1}{bc+1}=\frac{c(x-b)}{(c-b)(x-c)}=\frac{cx-bc}{cx+bc-bx-c^2}$$$$cx+bc-bx-c^2=(cx-bc)(bc+1)$$$$cx+bc-bx-c^2=bc^2x+cx-b^2c^2-bc$$$$2bc-c^2-bx=bc^2x-b^2c^2$$$$2bc-c^2+b^2c^2=bc^2x+bx$$$$x=\frac{2bc-c^2+b^2c^2}{b(c^2+1)}$$
and,
$$y=c(x-b)$$$$y=c \left( \frac{2bc-c^2+b^2c^2}{b(c^2+1)} -b \right)$$$$y=c \left( \frac{2bc-c^2+b^2c^2-b^2c^2-b^2}{bc^2+b} \right)$$$$y=\frac{-c(b-c)^2}{bc^2+b}$$
Hence,
$$Y \equiv \left( \frac{2bc+b^2c^2-c^2}{b(c^2+1)} , \frac{-c(b-c)^2}{b(c^2+1)} \right)$$
\par
\begin{flushleft}
Let $D^*$ be a point diametrically opposite to $D$ on $\omega$, or inshort, Let $D^*$ be the $D-$antipode in $\omega$, hence, $\angle D^*FD=\angle EH_1D=90^{\circ}$ $\Longrightarrow$ $FD^*||EH_1$ $$\Longrightarrow D^* \equiv (b,y)$$and since, $D^* \in ID$ and $ID:y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $
$$y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $$$$y=(x-c) \left( \frac{bc+1}{b-c} \right) $$$$y=(b-c) \left( \frac{bc+1}{b-c} \right)$$$$y=bc+1$$Hence,
$$D^* \equiv (b,bc+1)$$\par
\end{flushleft}
\par
\textbf{\underline{Coordinate for A}}:Recall, $AB \cap AC=A$
$$AB: y=\left( \frac{b-c}{bc+1} \right) (x-b)$$$$AC:y=1-x\left( \frac{b+c}{bc-1} \right)$$
$$\left( \frac{b-c}{bc+1} \right) (x-b)=1-x\left( \frac{b+c}{bc-1} \right)$$$$\frac{bc-1}{bc+1}=\frac{(bc-1)-x(b+c)}{(b-c)(x-b)}$$$$(b-c)(x-b)(bc-1)=(bc+1)(bc-1)-x(b+c)(bc+1)$$$$(b^2c-bc^2-b+c)(x-b)=b^2c^2-1-(b^2c+b+bc^2+c)x$$$$b^2c^2-1-(b^2c+b+bc^2+c)x=x(b^2c-bc^2-b+c) -b(b^2c-bc^2-b+c)$$$$b^2c^2-1+b(b^2c-bc^2-b+c)=x(b^2c-bc^2-b+c+b^2c+b+c+bc^2)$$$$b^2c^2-1+b^3c-b^2c^2-b^2+bc=x(2b^2c+2c)$$$$b^3c-b^2+bc-1=x(2b^2c+2c)$$$$(bc-1)(b^2+1)=x(2c)(b^2+1)$$$$x=\frac{bc-1}{2c}$$And,
$$y=1-x\left( \frac{b+c}{bc-1} \right)$$$$y=1-\frac{b+c}{2c}$$$$y=\frac{c-b}{2c}$$Hence,
$$A \equiv \left( \frac{bc-1}{2c} , \frac{c-b}{2c} \right) $$
\textbf{\underline{Equation for line AD}}: Recall, $D \equiv (c,0)$
$$AD: \frac{y-0}{\frac{c-b}{2c}-0}=\frac{x-c}{\frac{bc-1}{2c}-c}$$$$AD: y=\frac{x-c}{\frac{bc-1-2c^2}{2c}} \left(\frac{c-b}{2c} \right)$$$$AD: y =\frac{(x-c)(c-b)}{bc-1-2c^2}$$\par
\begin{flushleft}
Recall $AZ \cap EF=K$, but since, $Z \in AD$, hence, $AD \cap EF=K$
\par
\end{flushleft}
\par
\textbf{\underline{Coordinate for K}}: Recall, $AD \cap EF=K$, We have,
$$AD: y =\frac{(x-c)(c-b)}{bc-1-2c^2}$$$$EF: y=1-\frac{x}{b}$$
Hence,
$$1-\frac{x}{b}=\frac{(x-c)(c-b)}{bc-1-2c^2}$$
$$1-\frac{x}{b}=\frac{x(c-b)}{bc-1-2c^2} +\frac{c(b-c)}{bc-1-2c^2}$$$$1-\frac{(bc-c^2)}{bc-1-12c^2}=\frac{x}{b}+\frac{x(c-b)}{bc-1-2c^2}$$$$\frac{bc-1-2c^2-bc+c^2}{bc-1-2c^2}=\frac{x(bc-1-2c^2+bc-b^2)}{b(bc-1-2c^2)}$$$$\frac{-(c^2+1)}{bc-1-2c^2}=\frac{x(2bc-1-2c^2-b^2)}{b(bc-1-2c^2}$$$$x=\frac{-b(c^2+1)}{2bc-1-2c^2-b^2}$$$$x=\frac{b(c^2+1)}{2c^2+b^2+1-2bc}$$And,
$$y=1-\frac{x}{b}$$$$y=1-\frac{b(c^2+1)}{b(2c^2+b^2+1-2bc)}$$$$y=\frac{2c^2+b^2+1-2bc-c^2-1}{2c^2+b^2+1-2bc}$$$$y=\frac{(b-c)^2}{2c^2+b^2+1-2bc}$$Hence,
$$K \equiv \left( \frac{b(c^2+1)}{2c^2+b^2+1-2bc} , \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)$$\par
\textbf{\underline{Coodinate for Z}}: Note, that, since, $DD^*$ is the diameter of $\omega$, hence, $ZD^* \perp ZD$ or $ZD^* \perp AD$, therefore,
$$m_{ZD^*} \cdot m_{AD}=-1$$Now we have eariler found out that,
$$AD: y=\frac{(x-c)(c-b)}{bc-1-2c^2}$$$$AD:y=\frac{x(c-b)}{bc-1-2c^2} -\frac{c(b-c)}{bc-1-2c^2}$$We know that equation of a line can be represented in the form of $y=mx+b$, where $m$ is the slope of the line and $b$ is the $y-$intercept, hence using this we get,
$$m_{AD}=\frac{(c-b)}{bc-1-2c^2}$$
Hence,
$$ m_{ZD^*}=\frac{-1}{m_{AD}}=\frac{-1}{\frac{c-b}{bc-1-2c^2}}$$
$$m_{ZD^*}=\frac{2c^2+1-bc}{c-b}$$Let $Z \equiv (x',y')$ and recall that $D^* \equiv (b,bc+1)$, hence ,we can find equation of $ZD^*$,
$$ZD^*: \frac{y-y'}{bc+1-y'}=\frac{x-x'}{b-x'}$$$$ZD^*:y=y'+\left( \frac{x-x'}{b-x'} \right) (bc+1-y')$$Using the earier we stated that, any line can be written in the form of $y=mx+b$, so using this,
$$m_{ZD^*}=\frac{bc+1-y'}{b-x'}$$but, we eariler found out that,
$$m_{ZD^*}=\frac{2c^2+1-bc}{c-b}$$$$\Longrightarrow \frac{2c^2+1-bc}{c-b}=\frac{bc+1-y'}{b-x'} ----(3)$$And, Since, $Z \in AD$,
$$AD: y=\frac{(x-c)(b-c)}{bc-1-2c^2}$$$$y'=\frac{(x-c)(b-c)}{bc-1-2c^2}----(4)$$Solving $(3)$ and $(4)$ should yield the coordinates for $Z$,
$$(3) \longrightarrow$$$$\frac{2c^2+1-bc}{c-b}=\frac{bc+1-y'}{b-x'}$$$$(2c^2+1-bc)(b-x')=(bc+1)(c-b)-y'(c-b)$$$$y'=\frac{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}{b-c} -----(5)$$
Therefore, dividing $(4)$ and $(5)$, we have,
$$\frac{y'}{y'}=\frac{\frac{(x'-c)(c-b)}{bc-1-2c^2}}{\frac{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}{b-c}}$$$$\frac{bc-1-2c^2}{b-c}=\frac{(x'-c)(c-b)}{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}$$$$\frac{bc-1-2c^2}{b-c}=\frac{x'(c-b) +bc-c^2}{2bc^2+b-b^2c-x'(2c^2+1-bc)+b^2c+b-bc^2-c}$$$$\frac{bc-1-2c^2}{b-c}=\frac{x'(c-b) +bc-c^2}{bc^2+2b-c-x'(2c^2+1-bc)}$$$$(bc-1-2c^2)(bc^2+2b-c-x'(2c^2+1-bc))=x'(c-b)(b-c)+(bc-c^2)(b-c)$$$$(bc-1-2c^2)(bc^2+2b-c)+x'(bc-1-2c^2)^2=c(b-c)^2-x'(b-c)^2$$$$b^2c^3+2b^2c-bc^2-bc^2-2b+c-2bc^4-4bc^2+2c^3+x'(bc-1-2c^2)^2=b^2c-2bc^2+c^3-x'(b-c)^2$$$$b^2c^3+2b^2c-bc^2-bc^2-2b+c-2bc^4-4bc^2+2c^3-b^2c+2bc^2-c^3=-x'((b-c)^2+(bc-1-2c^2))$$$$(b^2c-2bc^2-2b+c)(c^2+1)=-x'(b^2-2bc+c^2+b^2c^2+1+4c^4-2bc+4c^2-4bc^3)$$$$(b^2c-2bc^2-2b+c)(c^2+1)=-x'((c^2+1)(b^2-4bc+4c^2+1))$$$$x' \equiv - \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right)$$
And, Since, as above stated,
$$y'=\frac{(x'-c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{(-(\frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1})-c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{-(\frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} +c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{(\frac{b^2c-2bc^2-2b+c+b^2c-4bc^2+4c^3+c}{b^2-4bc+4c^2+1})(b-c)}{bc-1-2c^2}$$$$y'=\frac{2(b-c)(bc-1-2c^2)(b-c)}{(bc-1-2c^2)(b^2-4bc+4c^2+1)}$$$$y' \equiv \frac{2(b-c)^2}{b^2-4bc+4c^2+1}$$Hence, Combining we have the coordinates for $Z$
$$Z \equiv \left( - \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right) , \left( \frac{2(b-c)^2}{b^2-4bc+4c^2+1} \right) \right)$$
\par
\textbf{\underline{Equation for line $ZD^*$ }}: Recall, $D^* \equiv (b,bc+1)$ and we have found out the coordinate for $Z$ above, Hence,
$$ZD^* : \frac{y-(bc+1)}{\frac{2(b-c)^2}{b^2-4bc+4c^2+1} -(bc+1)}=\frac{x-b}{- \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right) -b}$$$$ZD^*: \frac{y-(bc+1)}{2(b-c)^2-(bc+1)(b^2-4bc+4c^2+1)}=\frac{x-b}{-(b^2c-2bc^2-2b+c+b^3-4b^2c+4bc^2+b)}$$$$ZD^*: \frac{y-(bc+1)}{-(b^2-2bc-1)(bc-2c^2-1)}=\frac{x-b}{-(b-c)(b^2-2bc-1)}$$
$$ZD^*: y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$
\par
\textbf{\underline{Equation for line AX}}: Recall, $A \equiv \left( \frac{bc-1}{2c} , \frac{c-b}{2c} \right)$ and $X \equiv \left( 0, \frac{bc-c^2}{bc+1} \right) $, Hence,
$$AX: \frac{y- \frac{c-b}{2c}}{\frac{bc-c^2}{bc+1}-(\frac{c-b}{2c})}=\frac{x-\frac{bc-1}{2c}}{0-(\frac{bc-1}{2c})}$$$$AX: \frac{y-\frac{c-b}{2c}}{\frac{(bc-c^2)(2c)-(c-b)(bc+1)}{(bc+1)(2c)}} =\frac{x-(\frac{bc-1}{2c})}{-(\frac{bc-1}{2c})}$$$$AX: \frac{y-(\frac{c-b}{2c})}{\frac{b^2c+bc^2+b-2c^3-c}{bc+1}}=\frac{x-(\frac{bc-1}{2c})}{1-bc}$$$$AX: y-\left(\frac{c-b}{2c} \right)=\left( \frac{2cx-(bc-1)}{2c(1-bc)} \right) \left( \frac{b^2c+bc^2+b-2c^3-c)}{bc+1} \right)$$
$$AX: y=\frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)$$
\par
\textbf{\underline{Coordinate for L}}: Recall, that, $AX \cap ZD^*=L$
We have already found the equation for line $AX$ and line $ZD^*$, so now, we can find out the coordinates for $L$,
$$AX: y=\frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)$$$$ZD^*: y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$Equating $y$, we get,
$$\Longrightarrow \frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$$$\Longrightarrow -(b-c)^2(b^2c^2-1)-(2cx+1-bc)(b^2c+bc^2+b-2c^3-c)(b-c)$$$$=2c(bc+1)(b-c)(b^2c^2-1)+(2c)(bc-1-2c^2)(x-b)(b^2c^2-1)$$
$$\Longrightarrow -2b^3c^4x+4b^2c^5x-6c^3x-2cx-2b^3c^2x-2b^2cx+6bc^4x+6bc^2x-4c^5x+2b^2c^3x$$$$=2b^3c^3+2c^2+2b^3c^5-4bc+2b^2c^4+2b^2c^2-2bc^5-6bc^3+2c^4$$
$$\Longrightarrow -2c(c^2+1)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)x=2c(c^2+1)(bc-1)(b^2c+2b-c)$$$$\Longrightarrow x=\frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}$$
Now, we can use the value of $x$ to find out the value of $y$,
$$y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$$$y=\frac{(bc+1)(b-c) + (bc-2c^2-1)(x-b)}{b-c}$$$$y=\frac{(b^2-bc^2+b-c)+(bc-2c^2-1) \left(\frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}-b \right)}{b-c}$$$$y=\frac{(bc+1)(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)-(bc-2c^2-1)(b^4c-b^3c^2+b^3-2b^2c+bc^2-b+c)}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b^4c-4b^3c^2+2b^3+2b^2c^3-4b^2c+2bc^2}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b(b-c)^2(bc+1)}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}$$
\par
\par
$$L \equiv \left( \frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} , \frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right)$$
\par
\begin{flushleft}
Now we'll calculate the equation for $YK$
\end{flushleft}
\par
\textbf{\underline{Equation for line YK}}: Recall, $Y \equiv \left( \frac{2bc+b^2c^2-c^2}{b(c^2+1)} , \frac{-c(b-c)^2}{b(c^2+1)} \right)$ and \par $K \equiv \left( \frac{b(c^2+1)}{2c^2+b^2+1-2bc} , \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)$
Hence, we have,
$$YK : \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{-c(b-c)^2}{b(c^2+1)}-\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}=\frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{2bc+b^2c^2-c^2}{b(c^2+1)}-\left(\frac{b(c^2+1)}{2c^2+b^2+1-2bc}\right)} $$$$YK : \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}=\frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)} $$
Now if the coordinates of $L$ satisfy equation of $YK$, then we have indeed proved that $L$ lies on $YK$, so we'll do it by first computing the RHS and then LHS and then if RHS equals LHS, we're done with our claim, So here we go!, \par
\textbf{\underline{LHS}}:\par
$$\Longrightarrow \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}$$$$\Longrightarrow \frac{\left( \frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right)-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}$$$$\Longrightarrow \frac{\frac{(b^2-2bc+2c^2+1)(2b^2-2bc)(bc+1)-(b-c)^2(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1)}}{\frac{c(b-c)^2(b^2-2bc+2c^2+1)+(b-c)^2(bc^2+b)}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$$$\Longrightarrow \frac{\frac{b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{(b-c)(b^2c-bc^2+b+2c^3+c)}{bc^2+b}}$$$$\Longrightarrow \frac{\frac{b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{b^3c-2b^2c^2+b^2+3bc^3-2c^4-c^2}{bc^2+b}} ------(6)$$
\par
\textbf{\underline{RHS}}: \par
$$\Longrightarrow \frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)}$$$$\Longrightarrow \frac{\left( \frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right) -\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)}$$$$\Longrightarrow \frac{- \left( \frac{(bc-1)(b^2+2b-c)(b^2-2bc+2c^2+1)+(bc^2+b)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1) } \right) }{\frac{(bc^2+b)^2-(2bc+b^2c^2-c^2)(b^2-2bc+2c^2+1)}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$
$$\Longrightarrow \frac{\frac{-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1)}}{\frac{-b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$$$\Longrightarrow \frac{\frac{-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{-b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2}{bc^2+b}} -----(7)$$\par
Now note that,
$$\left(-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c \right) \cdot \left(b^3c-2b^2c^2+b^2+3bc^3-2c^4-c^2 \right) $$$$= -b^8c^3+3b^7c^4-3b^7c^2-5b^6c^5+8b^6c^3-b^6c+5b^5c^6-12b^5c^4-2b^5c^2+b^5-2b^4c^7+14b^4c^5+14b^4c^3-2b^4c$$$$-9b^3c^6-24b^3c^4+b^3+2b^2c^7+23b^2c^5+6b^2c^3-b^2c-14bc^6-9bc^4-bc^2+4c^7+4c^5+c^3$$$$=\left( b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c \right)$$$$ \cdot \left( -b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2 \right)$$
So using this, ofcourse, $(6)$ and $(7)$ are equal, And Hence, $L$ lies on $KY$
Hence, our Claim is proved!! \par
\par
\begin{flushleft}
I'm so stupid
We'll define some points, Let $D^*$ be the $D-$antipode in $\omega$, Let $AZ \cap EF=K$, Let $ZD^* \cap BC=G$, $AX \cap ZD^*=L$, $XZ \cap \omega =X_1$ and $YZ \cap \omega =Y_1$, Let the feet of perpendiculars from $E,F$ to $DF,ED$ respectively be $H_1,H_2$
$\textbf{\underline{Claim 1}}$: Line $KY$ passes through $AX \cap ZD^*=L$
We'll use Cartesian Coordinates to give a proof for this claim! Set $EH_1$ as the $Y-
$axis and $DF$ as the $X-$axis
Set $D \equiv (c,0)$ and $F \equiv (b,0)$ and WLOG, we can safely assume $E \equiv (0,1)$, because just magnification of the triangle won't change the configuration and won't affect our calculations and Let $b,c \in R$
Since, $H_1$ is the origin, hence, $H_1 \equiv (0,0)$ and really easy to see that the equation of the perpendicular bisector of $DF$ is $x=\frac{b+c}{2}$
$I$ lies on the perpendicular bisector of $DF$: Proof uses the fact that, $BFID$ is cyclic $\Longrightarrow$ $\angle IFD=\angle IDF=\frac{1}{2}\angle ABC$,
Using this fact, $I \equiv \left( \frac{b+c}{2} ,y \right) $, we need to calculate the y coordinate of $I$
$\textbf{\underline{Coordinate for I}}$: We know $I\equiv \left( \frac{b+c}{2} , y \right)$, Since $I$ is the circumcenter of $\omega$, therefore, $EI=DI$, hence, by distance formula we get the following:
$$EI=DI$$$$\sqrt{\left( \frac{b+c}{2} +0 \right) ^2 +(y-1)^2}=\sqrt{ \left( \frac{b+c}{2} -c \right) ^2 +y^2 }$$And after simplifying this gives $\Longrightarrow$ $y=\frac{bc+1}{2}$, Hence, the coordinate for $I$ is
$$I \equiv \left( \frac{b+c}{2} ,\frac{bc+1}{2} \right) $$
We'll use this notation to represent the equation of line throughout the solution: For a line $XY$ with equation $ax+by+c=0$ will be represented as
$$XY : ax+by+c=0$$
We'll use the famous formula from coordinate geometry to find out the equation of line when the coordinates for two points on it is given, The formula is as follows:
$\textbf{\underline{Formula 1}}$: If $X \equiv (x_1,y_1)$ and $Y \equiv (x_2,y_2)$, then,
$$XY: \frac{y-y_1}{y_1-y_2}=\frac{x-x_1}{x_1-x_2}$$Which can be re-written as:
$$XY: \frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$
$\textbf{\underline{Equation for line IE}}:$ We know that the coordinate for $I \equiv \left( \frac{b+c}{2} ,\frac{bc+1}{2} \right)$ and $E \equiv (0,1)$, Hence,
$$IE: \frac{y-1}{\frac{bc+1}{2}-1}=\frac{x-0}{\frac{b+c}{2}-0}$$$$IE: y-1=x\left( \frac{bc-1}{b+c} \right)$$
$$IE: y=1+\left( \frac{bc-1}{b+c} \right) x $$
$\textbf{\underline{Equation for line IF}}$: We know that the coordinate for $I \equiv \left(\frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $F \equiv (b,0)$, Hence,
$$IF : \frac{y-0}{\frac{bc+1}{2}-0}=\frac{x-b}{\frac{b+c}{2}-b}$$$$IF : y=\left(\frac{x-b}{\frac{c-b}{2}} \right) \left( \frac{bc+1}{2} \right)$$$$IF : y=\left( \frac{bc+1}{c-b} \right) x +\frac{b^2c+b}{b-c}$$
$\textbf{\underline{Equation for line ID}}$: We know that the coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $D \equiv (c,0)$, Hence,
$$ID : \frac{y-0}{\frac{bc+1}{2}-0}=\frac{x-c}{\frac{b+c}{2}-c}$$$$ID : y=\left( \frac{x-c}{\frac{b-c}{2}} \right) \left( \frac{bc+1}{2} \right)$$$$ID : y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $$
Note that, $AC \perp EI$, $AB \perp IF$ and $BC \perp ID$
We'll use the famous formula from coordinate geometry to find out the slope of line when the coordinates of two points lying on the line are given, The formula is as follows:
$\textbf{\underline{Formula 2}}:$ If $X \equiv (x_1,y_1)$ and $Y \equiv (x_2,y_2)$ and Let $m_{XY}$ represent the slope of the line $XY$, then,
$$m_{XY}=\frac{y_1-y_2}{x_1-x_2}$$
$\textbf{\underline{Slope for IF}}$: The coordinate for $I \equiv \left(\frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $F \equiv (b,0)$
$$m_{IF}=\frac{\frac{bc+1}{2}-0}{\frac{b+c}{2}-b}$$$$m_{IF}=\frac{bc+1}{c-b}$$
$\textbf{\underline{Slope for IE}}: $The coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $E \equiv (0,1)$
$$m_{IE}=\frac{\frac{bc+1}{2} -1}{\frac{b+c}{2}-0}$$$$m_{IE}=\frac{bc-1}{b+c}$$
$\textbf{\underline{Slope for ID}}:$ The coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $D \equiv (c,0)$
$$m_{ID}=\frac{\frac{bc+1}{2}-0}{\frac{b+c}{2}-c}$$$$m_{ID}=\frac{bc+1}{b-c}$$
We'll state another famous result from coordinate geometry
$\textbf{\underline{Formula 3}}: $If $X_1Y_1$ and $X_2Y_2$ are perpendicular to each other, then,
$$m_{X_1Y_1} \cdot m_{X_2Y_2}=-1$$
$\textbf{\underline{Slope for AB}}$: Applying Formula 3
$$m_{AB}=\frac{b-c}{bc+1}$$
$\textbf{\underline{Slope for BC}}:$ Applying Formula 3
$$m_{BC}=\frac{c-b}{bc+1}$$
$ \textbf{\underline{Slope for AC}}$: Applying Formula 3
$$m_{AC}=\frac{-(b+c)}{bc-1}$$
We'll state another well known formula from coordinate geometry to find out the equation of line when the coordinates for a point lying on the line and the slope of line is given
$ \textbf{\underline{Formula 4}}$: If $X_1 \equiv (x_1,y_1)$ lies on $\ell$ and $m_{\ell}$ is the slope of $\ell$, then,
$$\ell : y-y_1=m_{\ell} (x-x_1)$$
$\textbf{\underline{Equation for line AB}}:$ $F$ lies on $AB$ and $F \equiv (b,0)$ Hence,
$$AB: y-0=\left( \frac{b-c}{bc+1} \right) (x-b)$$$$AB: y=\left( \frac{b-c}{bc+1} \right) (x-b)$$
$\textbf{\underline{Equation for line BC}}:$ $D$ lies on $BC$ and $D \equiv (c,0)$
$$BC: y-0=\left( \frac{c-b}{bc+1} \right) (x-c)$$$$BC: y=\left( \frac{c-b}{bc+1} \right) (x-c)$$
$ \textbf{\underline{Equation for line AC}}$: $E$ lies on $AC$ and $E \equiv (0,1)$
$$AC: y-1=\frac{-(b+c)}{bc-1} (x-0)$$$$AC: y=1-x\left( \frac{b+c}{bc-1} \right)$$
$ \textbf{\underline{Coordinate for X}}:$ now recall that $H_1$ is the feet of perpendicular from $E$ to $DF$ and $EH_1 \cap BC=X$ and also, $EH_1$ is the y-axis, and hence, x- coordinate for $X$ is $0$ $\Longrightarrow$ $X \equiv (0,y)$ and since, $X \in BC$, we have,
$$BC:y=\left( \frac{c-b}{bc+1} \right) (x-c)$$$$y=-c \left( \frac{c-b}{bc+1} \right)$$$$y=\frac{bc-c^2}{bc+1}$$$$\Longrightarrow X \equiv \left( 0, \frac{bc-c^2}{bc+1} \right)$$
$\textbf{\underline{Equation for line DE}}:$ Recall, $D \equiv (c,0)$ and $E \equiv (0,1)$, Hence, using Formula 1,
$$DE:\frac{y-0}{1-0}=\frac{x-c}{0-c}$$$$DE: y=1-\frac{x}{c}$$
$ \textbf{\underline{Equation for line EF}}:$ Recall, $E \equiv (0,1)$ and $F \equiv (b,0)$, Hence, using Formula 1,
$$EF: \frac{y-0}{1-0}=\frac{x-b}{0-b}$$$$EF: y=1-\frac{x}{b}$$
$ \textbf{\underline{Slope for DE}}$: $D \equiv (c,0)$ and $E \equiv (0,1)$,
$$m_{DE}=\frac{0-1}{c-0}$$$$m_{DE}=\frac{-1}{c}$$
$\textbf{\underline{Equation for line $FH_2$}}$: $F \equiv (b,0)$ Notice, $FH_2 \perp ED$, hence,
$$m_{FH_2} \cdot m_{DE}=-1$$$$m_{FH_2}=c$$And since, $F$ lies on $FH_2$, therefore,
$$FH_2 : y-0=c(x-b)$$$$FH_2 : y=c(x-b)$$
$ \textbf{\underline{Coordinate for Y}}$: Recall $FH_2 \cap BC=Y$, we have, $FH_2 : y=c(x-b)$ and $BC: y=\left( \frac{c-b}{bc+1} \right) (x-c)$, Hence, solving equations: should yield coordinates for $Y$
$$FH_2 : y=c(x-b) -----(1)$$$$BC: y=\left( \frac{c-b}{bc+1} \right) (x-c) ------(2)$$
Equating $(1)$ and $(2)$, we have,
$$c(x-b)=\frac{(c-b)(x-c)}{bc+1}$$$$\frac{1}{bc+1}=\frac{c(x-b)}{(c-b)(x-c)}=\frac{cx-bc}{cx+bc-bx-c^2}$$$$cx+bc-bx-c^2=(cx-bc)(bc+1)$$$$cx+bc-bx-c^2=bc^2x+cx-b^2c^2-bc$$$$2bc-c^2-bx=bc^2x-b^2c^2$$$$2bc-c^2+b^2c^2=bc^2x+bx$$$$x=\frac{2bc-c^2+b^2c^2}{b(c^2+1)}$$
and,
$$y=c(x-b)$$$$y=c \left( \frac{2bc-c^2+b^2c^2}{b(c^2+1)} -b \right)$$$$y=c \left( \frac{2bc-c^2+b^2c^2-b^2c^2-b^2}{bc^2+b} \right)$$$$y=\frac{-c(b-c)^2}{bc^2+b}$$
Hence,
$$Y \equiv \left( \frac{2bc+b^2c^2-c^2}{b(c^2+1)} , \frac{-c(b-c)^2}{b(c^2+1)} \right)$$
Let $D^*$ be a point diametrically opposite to $D$ on $\omega$, or inshort, Let $D^*$ be the $D-$antipode in $\omega$, hence, $\angle D^*FD=\angle EH_1D=90^{\circ}$ $\Longrightarrow$ $FD^*||EH_1$ $$\Longrightarrow D^* \equiv (b,y)$$and since, $D^* \in ID$ and $ID:y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $
$$y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $$$$y=(x-c) \left( \frac{bc+1}{b-c} \right) $$$$y=(b-c) \left( \frac{bc+1}{b-c} \right)$$$$y=bc+1$$Hence,
$$D^* \equiv (b,bc+1)$$
$\textbf{\underline{Coordinate for A}}$:Recall, $AB \cap AC=A$
$$AB: y=\left( \frac{b-c}{bc+1} \right) (x-b)$$$$AC:y=1-x\left( \frac{b+c}{bc-1} \right)$$
$$\left( \frac{b-c}{bc+1} \right) (x-b)=1-x\left( \frac{b+c}{bc-1} \right)$$$$\frac{bc-1}{bc+1}=\frac{(bc-1)-x(b+c)}{(b-c)(x-b)}$$$$(b-c)(x-b)(bc-1)=(bc+1)(bc-1)-x(b+c)(bc+1)$$$$(b^2c-bc^2-b+c)(x-b)=b^2c^2-1-(b^2c+b+bc^2+c)x$$$$b^2c^2-1-(b^2c+b+bc^2+c)x=x(b^2c-bc^2-b+c) -b(b^2c-bc^2-b+c)$$$$b^2c^2-1+b(b^2c-bc^2-b+c)=x(b^2c-bc^2-b+c+b^2c+b+c+bc^2)$$$$b^2c^2-1+b^3c-b^2c^2-b^2+bc=x(2b^2c+2c)$$$$b^3c-b^2+bc-1=x(2b^2c+2c)$$$$(bc-1)(b^2+1)=x(2c)(b^2+1)$$$$x=\frac{bc-1}{2c}$$And,
$$y=1-x\left( \frac{b+c}{bc-1} \right)$$$$y=1-\frac{b+c}{2c}$$$$y=\frac{c-b}{2c}$$Hence,
$$A \equiv \left( \frac{bc-1}{2c} , \frac{c-b}{2c} \right) $$
$\textbf{\underline{Equation for line AD}}:$ Recall, $D \equiv (c,0)$
$$AD: \frac{y-0}{\frac{c-b}{2c}-0}=\frac{x-c}{\frac{bc-1}{2c}-c}$$$$AD: y=\frac{x-c}{\frac{bc-1-2c^2}{2c}} \left(\frac{c-b}{2c} \right)$$$$AD: y =\frac{(x-c)(c-b)}{bc-1-2c^2}$$
Recall $AZ \cap EF=K$, but since, $Z \in AD$, hence, $AD \cap EF=K$
$\textbf{\underline{Coordinate for K}}$: Recall, $AD \cap EF=K$, We have,
$$AD: y =\frac{(x-c)(c-b)}{bc-1-2c^2}$$$$EF: y=1-\frac{x}{b}$$
Hence,
$$1-\frac{x}{b}=\frac{(x-c)(c-b)}{bc-1-2c^2}$$
$$1-\frac{x}{b}=\frac{x(c-b)}{bc-1-2c^2} +\frac{c(b-c)}{bc-1-2c^2}$$$$1-\frac{(bc-c^2)}{bc-1-12c^2}=\frac{x}{b}+\frac{x(c-b)}{bc-1-2c^2}$$$$\frac{bc-1-2c^2-bc+c^2}{bc-1-2c^2}=\frac{x(bc-1-2c^2+bc-b^2)}{b(bc-1-2c^2)}$$$$\frac{-(c^2+1)}{bc-1-2c^2}=\frac{x(2bc-1-2c^2-b^2)}{b(bc-1-2c^2}$$$$x=\frac{-b(c^2+1)}{2bc-1-2c^2-b^2}$$$$x=\frac{b(c^2+1)}{2c^2+b^2+1-2bc}$$And,
$$y=1-\frac{x}{b}$$$$y=1-\frac{b(c^2+1)}{b(2c^2+b^2+1-2bc)}$$$$y=\frac{2c^2+b^2+1-2bc-c^2-1}{2c^2+b^2+1-2bc}$$$$y=\frac{(b-c)^2}{2c^2+b^2+1-2bc}$$Hence,
$$K \equiv \left( \frac{b(c^2+1)}{2c^2+b^2+1-2bc} , \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)$$
$\textbf{\underline{Coodinate for Z}}$: Note, that, since, $DD^*$ is the diameter of $\omega$, hence, $ZD^* \perp ZD$ or $ZD^* \perp AD$, therefore,
$$m_{ZD^*} \cdot m_{AD}=-1$$Now we have eariler found out that,
$$AD: y=\frac{(x-c)(c-b)}{bc-1-2c^2}$$$$AD:y=\frac{x(c-b)}{bc-1-2c^2} -\frac{c(b-c)}{bc-1-2c^2}$$We know that equation of a line can be represented in the form of $y=mx+b$, where $m$ is the slope of the line and $b$ is the $y-$intercept, hence using this we get,
$$m_{AD}=\frac{(c-b)}{bc-1-2c^2}$$
Hence,
$$ m_{ZD^*}=\frac{-1}{m_{AD}}=\frac{-1}{\frac{c-b}{bc-1-2c^2}}$$
$$m_{ZD^*}=\frac{2c^2+1-bc}{c-b}$$Let $Z \equiv (x',y')$ and recall that $D^* \equiv (b,bc+1)$, hence ,we can find equation of $ZD^*$,
$$ZD^*: \frac{y-y'}{bc+1-y'}=\frac{x-x'}{b-x'}$$$$ZD^*:y=y'+\left( \frac{x-x'}{b-x'} \right) (bc+1-y')$$Using the earier we stated that, any line can be written in the form of $y=mx+b$, so using this,
$$m_{ZD^*}=\frac{bc+1-y'}{b-x'}$$but, we eariler found out that,
$$m_{ZD^*}=\frac{2c^2+1-bc}{c-b}$$$$\Longrightarrow \frac{2c^2+1-bc}{c-b}=\frac{bc+1-y'}{b-x'} ----(3)$$And, Since, $Z \in AD$,
$$AD: y=\frac{(x-c)(b-c)}{bc-1-2c^2}$$$$y'=\frac{(x-c)(b-c)}{bc-1-2c^2}----(4)$$Solving $(3)$ and $(4)$ should yield the coordinates for $Z$,
$$(3) \longrightarrow$$$$\frac{2c^2+1-bc}{c-b}=\frac{bc+1-y'}{b-x'}$$$$(2c^2+1-bc)(b-x')=(bc+1)(c-b)-y'(c-b)$$$$y'=\frac{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}{b-c} -----(5)$$
Therefore, dividing $(4)$ and $(5)$, we have,
$$\frac{y'}{y'}=\frac{\frac{(x'-c)(c-b)}{bc-1-2c^2}}{\frac{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}{b-c}}$$$$\frac{bc-1-2c^2}{b-c}=\frac{(x'-c)(c-b)}{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}$$$$\frac{bc-1-2c^2}{b-c}=\frac{x'(c-b) +bc-c^2}{2bc^2+b-b^2c-x'(2c^2+1-bc)+b^2c+b-bc^2-c}$$$$\frac{bc-1-2c^2}{b-c}=\frac{x'(c-b) +bc-c^2}{bc^2+2b-c-x'(2c^2+1-bc)}$$$$(bc-1-2c^2)(bc^2+2b-c-x'(2c^2+1-bc))=x'(c-b)(b-c)+(bc-c^2)(b-c)$$$$(bc-1-2c^2)(bc^2+2b-c)+x'(bc-1-2c^2)^2=c(b-c)^2-x'(b-c)^2$$$$b^2c^3+2b^2c-bc^2-bc^2-2b+c-2bc^4-4bc^2+2c^3+x'(bc-1-2c^2)^2=b^2c-2bc^2+c^3-x'(b-c)^2$$$$b^2c^3+2b^2c-bc^2-bc^2-2b+c-2bc^4-4bc^2+2c^3-b^2c+2bc^2-c^3=-x'((b-c)^2+(bc-1-2c^2))$$$$(b^2c-2bc^2-2b+c)(c^2+1)=-x'(b^2-2bc+c^2+b^2c^2+1+4c^4-2bc+4c^2-4bc^3)$$$$(b^2c-2bc^2-2b+c)(c^2+1)=-x'((c^2+1)(b^2-4bc+4c^2+1))$$$$x' \equiv - \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right)$$
And, Since, as above stated,
$$y'=\frac{(x'-c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{(-(\frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1})-c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{-(\frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} +c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{(\frac{b^2c-2bc^2-2b+c+b^2c-4bc^2+4c^3+c}{b^2-4bc+4c^2+1})(b-c)}{bc-1-2c^2}$$$$y'=\frac{2(b-c)(bc-1-2c^2)(b-c)}{(bc-1-2c^2)(b^2-4bc+4c^2+1)}$$$$y' \equiv \frac{2(b-c)^2}{b^2-4bc+4c^2+1}$$Hence, Combining we have the coordinates for $Z$
$$Z \equiv \left( - \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right) , \left( \frac{2(b-c)^2}{b^2-4bc+4c^2+1} \right) \right)$$
$\textbf{\underline{Equation for line $ZD^*$ }}$: Recall, $D^* \equiv (b,bc+1)$ and we have found out the coordinate for $Z$ above, Hence,
$$ZD^* : \frac{y-(bc+1)}{\frac{2(b-c)^2}{b^2-4bc+4c^2+1} -(bc+1)}=\frac{x-b}{- \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right) -b}$$$$ZD^*: \frac{y-(bc+1)}{2(b-c)^2-(bc+1)(b^2-4bc+4c^2+1)}=\frac{x-b}{-(b^2c-2bc^2-2b+c+b^3-4b^2c+4bc^2+b)}$$$$ZD^*: \frac{y-(bc+1)}{-(b^2-2bc-1)(bc-2c^2-1)}=\frac{x-b}{-(b-c)(b^2-2bc-1)}$$
$$ZD^*: y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$
$\textbf{\underline{Equation for line AX}}:$ Recall, $A \equiv \left( \frac{bc-1}{2c} , \frac{c-b}{2c} \right)$ and $X \equiv \left( 0, \frac{bc-c^2}{bc+1} \right) $, Hence,
$$AX: \frac{y- \frac{c-b}{2c}}{\frac{bc-c^2}{bc+1}-(\frac{c-b}{2c})}=\frac{x-\frac{bc-1}{2c}}{0-(\frac{bc-1}{2c})}$$$$AX: \frac{y-\frac{c-b}{2c}}{\frac{(bc-c^2)(2c)-(c-b)(bc+1)}{(bc+1)(2c)}} =\frac{x-(\frac{bc-1}{2c})}{-(\frac{bc-1}{2c})}$$$$AX: \frac{y-(\frac{c-b}{2c})}{\frac{b^2c+bc^2+b-2c^3-c}{bc+1}}=\frac{x-(\frac{bc-1}{2c})}{1-bc}$$$$AX: y-\left(\frac{c-b}{2c} \right)=\left( \frac{2cx-(bc-1)}{2c(1-bc)} \right) \left( \frac{b^2c+bc^2+b-2c^3-c)}{bc+1} \right)$$
$$AX: y=\frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)$$
$\textbf{\underline{Coordinate for L}}$: Recall, that, $AX \cap ZD^*=L$
We have already found the equation for line $AX$ and line $ZD^*$, so now, we can find out the coordinates for $L$,
$$AX: y=\frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)$$$$ZD^*: y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$Equating $y$, we get,
$$\Longrightarrow \frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$$$\Longrightarrow -(b-c)^2(b^2c^2-1)-(2cx+1-bc)(b^2c+bc^2+b-2c^3-c)(b-c)$$$$=2c(bc+1)(b-c)(b^2c^2-1)+(2c)(bc-1-2c^2)(x-b)(b^2c^2-1)$$
$$\Longrightarrow -2b^3c^4x+4b^2c^5x-6c^3x-2cx-2b^3c^2x-2b^2cx+6bc^4x+6bc^2x-4c^5x+2b^2c^3x$$$$=2b^3c^3+2c^2+2b^3c^5-4bc+2b^2c^4+2b^2c^2-2bc^5-6bc^3+2c^4$$
$$\Longrightarrow -2c(c^2+1)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)x=2c(c^2+1)(bc-1)(b^2c+2b-c)$$$$\Longrightarrow x=\frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}$$
Now, we can use the value of $x$ to find out the value of $y$,
$$y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$$$y=\frac{(bc+1)(b-c) + (bc-2c^2-1)(x-b)}{b-c}$$$$y=\frac{(b^2-bc^2+b-c)+(bc-2c^2-1) \left(\frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}-b \right)}{b-c}$$$$y=\frac{(bc+1)(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)-(bc-2c^2-1)(b^4c-b^3c^2+b^3-2b^2c+bc^2-b+c)}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b^4c-4b^3c^2+2b^3+2b^2c^3-4b^2c+2bc^2}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b(b-c)^2(bc+1)}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}$$
$$L \equiv \left( \frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} , \frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right)$$
Now we'll calculate the equation for $YK$
$\textbf{\underline{Equation for line YK}}$: Recall, $Y \equiv \left( \frac{2bc+b^2c^2-c^2}{b(c^2+1)} , \frac{-c(b-c)^2}{b(c^2+1)} \right)$ and \par $K \equiv \left( \frac{b(c^2+1)}{2c^2+b^2+1-2bc} , \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)$
Hence, we have,
$$YK : \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{-c(b-c)^2}{b(c^2+1)}-\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}=\frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{2bc+b^2c^2-c^2}{b(c^2+1)}-\left(\frac{b(c^2+1)}{2c^2+b^2+1-2bc}\right)} $$$$YK : \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}=\frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)} $$
Now if the coordinates of $L$ satisfy equation of $YK$, then we have indeed proved that $L$ lies on $YK$, so we'll do it by first computing the RHS and then LHS and then if RHS equals LHS, we're done with our claim, So here we go!,
$\textbf{\underline{LHS}}:$
$$\Longrightarrow \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}$$$$\Longrightarrow \frac{\left( \frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right)-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}$$$$\Longrightarrow \frac{\frac{(b^2-2bc+2c^2+1)(2b^2-2bc)(bc+1)-(b-c)^2(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1)}}{\frac{c(b-c)^2(b^2-2bc+2c^2+1)+(b-c)^2(bc^2+b)}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$$$\Longrightarrow \frac{\frac{b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{(b-c)(b^2c-bc^2+b+2c^3+c)}{bc^2+b}}$$$$\Longrightarrow \frac{\frac{b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{b^3c-2b^2c^2+b^2+3bc^3-2c^4-c^2}{bc^2+b}} ------(6)$$
$\textbf{\underline{RHS}}: $
$$\Longrightarrow \frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)}$$$$\Longrightarrow \frac{\left( \frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right) -\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)}$$$$\Longrightarrow \frac{- \left( \frac{(bc-1)(b^2+2b-c)(b^2-2bc+2c^2+1)+(bc^2+b)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1) } \right) }{\frac{(bc^2+b)^2-(2bc+b^2c^2-c^2)(b^2-2bc+2c^2+1)}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$
$$\Longrightarrow \frac{\frac{-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1)}}{\frac{-b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$$$\Longrightarrow \frac{\frac{-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{-b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2}{bc^2+b}} -----(7)$$
Now note that,
$$\left(-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c \right) \cdot \left(b^3c-2b^2c^2+b^2+3bc^3-2c^4-c^2 \right) $$$$= -b^8c^3+3b^7c^4-3b^7c^2-5b^6c^5+8b^6c^3-b^6c+5b^5c^6-12b^5c^4-2b^5c^2+b^5-2b^4c^7+14b^4c^5+14b^4c^3-2b^4c$$$$-9b^3c^6-24b^3c^4+b^3+2b^2c^7+23b^2c^5+6b^2c^3-b^2c-14bc^6-9bc^4-bc^2+4c^7+4c^5+c^3$$$$=\left( b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c \right)$$$$ \cdot \left( -b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2 \right)$$
So using this, ofcourse, $(6)$ and $(7)$ are equal, And Hence, $L$ lies on $KY$
Hence, our Claim is proved!!
\begin{flushleft}
$\textbf{\underline{Back to the Main Problem}}$:From (Claim 1), Note, $ZFDE$ is harmonic quadrilateral, therefore,
$$-1=(D,Z;F,E) \stackrel{F}{=} (D,Z;A,K) \stackrel{L}{=} (D,G;X,Y)=(G,D;X,Y)$$Since, $DD^*$ is the diameter of $\omega$, hence, $\angle DZD^*=\angle DZG=90^{\circ}$ and since, $(G,D;X,Y)=-1$, hence from (Lemma 1), we have, $ZD$ is the angle bisector of $\angle XZY$, We'll state and prove Lemma 1 now,
$\textbf{\underline{Lemma 1}}$: Let $X,A,Y,B$ be four collinear points lying in the same order, and Let the four point be in such a manner that:
$\bullet$ $-1=(X,Y;A,B)$
$\bullet$ Let $C$ be any point not lying collinear to those 4 points, and such that, $\angle XCY=90^{\circ}$, \par
Then, $CY$ bisects $\angle ACB$
Draw $\ell$ parallel to $XC$ through $Y$, then $CY \perp \ell$ and let $\ell \cap AC=P$ and $\ell \cap BC=Q$, then, $\Delta XAC \sim \Delta YAP$ and $\Delta XBC \sim \Delta YBQ$ gives us,
$$\frac{AX}{XC}=\frac{AY}{PY} -----(i)$$And,
$$\frac{BX}{XC}=\frac{BY}{YQ} -----(ii)$$and, $$-1=(X,Y;A,B) \Longrightarrow \frac{AX}{AY}=\frac{BX}{BY} ------(iii)$$Hence, using $(i), (ii), (iii)$, it's easy to get,
$$YP=YQ \Longrightarrow \angle ACY=\angle BCA$$Hence, $CY$ is the angle bisector of $\angle ACB$
Hence we're completed with the proof of our Lemma!!
Let $XZ \cap (I)=X_1$ and $YZ \cap (I) =Y_1$, Recall that earlier we had derived that, $(G,D;X,Y)=-1$ and $\angle DZG=90^{\circ}$, hence applying Lemma 1, we get that $ZD$ is the angle bisector of $\angle XZY$ or $\angle XZD=\angle YZD$, now,
$$\angle YZD=\angle XZD=\angle X_1D^*D=90^{\circ}-\angle X_1DD^*=\angle X_1DX $$Hence, $X_1Y_1||XY$, hence $\Delta ZX_1Y_1$ and $\Delta ZXY$, hence their circumcircles are tangent at $Z$
AlastorMoody wrote:
I'm so stupid
We'll define some points, Let $D^*$ be the $D-$antipode in $\omega$, Let $AZ \cap EF=K$, Let $ZD^* \cap BC=G$, $AX \cap ZD^*=L$, $XZ \cap \omega =X_1$ and $YZ \cap \omega =Y_1$, Let the feet of perpendiculars from $E,F$ to $DF,ED$ respectively be $H_1,H_2$
$\textbf{\underline{Claim 1}}$: Line $KY$ passes through $AX \cap ZD^*=L$
We'll use Cartesian Coordinates to give a proof for this claim! Set $EH_1$ as the $Y-
$axis and $DF$ as the $X-$axis
Set $D \equiv (c,0)$ and $F \equiv (b,0)$ and WLOG, we can safely assume $E \equiv (0,1)$, because just magnification of the triangle won't change the configuration and won't affect our calculations and Let $b,c \in R$
Since, $H_1$ is the origin, hence, $H_1 \equiv (0,0)$ and really easy to see that the equation of the perpendicular bisector of $DF$ is $x=\frac{b+c}{2}$
$I$ lies on the perpendicular bisector of $DF$: Proof uses the fact that, $BFID$ is cyclic $\Longrightarrow$ $\angle IFD=\angle IDF=\frac{1}{2}\angle ABC$,
Using this fact, $I \equiv \left( \frac{b+c}{2} ,y \right) $, we need to calculate the y coordinate of $I$
$\textbf{\underline{Coordinate for I}}$: We know $I\equiv \left( \frac{b+c}{2} , y \right)$, Since $I$ is the circumcenter of $\omega$, therefore, $EI=DI$, hence, by distance formula we get the following:
$$EI=DI$$$$\sqrt{\left( \frac{b+c}{2} +0 \right) ^2 +(y-1)^2}=\sqrt{ \left( \frac{b+c}{2} -c \right) ^2 +y^2 }$$And after simplifying this gives $\Longrightarrow$ $y=\frac{bc+1}{2}$, Hence, the coordinate for $I$ is
$$I \equiv \left( \frac{b+c}{2} ,\frac{bc+1}{2} \right) $$
We'll use this notation to represent the equation of line throughout the solution: For a line $XY$ with equation $ax+by+c=0$ will be represented as
$$XY : ax+by+c=0$$
\end{flushleft}
\begin{flushleft}
We'll use the famous formula from coordinate geometry to find out the equation of line when the coordinates for two points on it is given, The formula is as follows:
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 1}}: If $X \equiv (x_1,y_1)$ and $Y \equiv (x_2,y_2)$, then,
$$XY: \frac{y-y_1}{y_1-y_2}=\frac{x-x_1}{x_1-x_2}$$Which can be re-written as:
$$XY: \frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$
\end{flushleft}
\par
\textbf{\underline{Equation for line IE}}: We know that the coordinate for $I \equiv \left( \frac{b+c}{2} ,\frac{bc+1}{2} \right)$ and $E \equiv (0,1)$, Hence,
$$IE: \frac{y-1}{\frac{bc+1}{2}-1}=\frac{x-0}{\frac{b+c}{2}-0}$$$$IE: y-1=x\left( \frac{bc-1}{b+c} \right)$$
$$IE: y=1+\left( \frac{bc-1}{b+c} \right) x $$
\par
\textbf{\underline{Equation for line IF}}: We know that the coordinate for $I \equiv \left(\frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $F \equiv (b,0)$, Hence,
$$IF : \frac{y-0}{\frac{bc+1}{2}-0}=\frac{x-b}{\frac{b+c}{2}-b}$$$$IF : y=\left(\frac{x-b}{\frac{c-b}{2}} \right) \left( \frac{bc+1}{2} \right)$$$$IF : y=\left( \frac{bc+1}{c-b} \right) x +\frac{b^2c+b}{b-c}$$
\textbf{\underline{Equation for line ID}}: We know that the coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $D \equiv (c,0)$, Hence,
$$ID : \frac{y-0}{\frac{bc+1}{2}-0}=\frac{x-c}{\frac{b+c}{2}-c}$$$$ID : y=\left( \frac{x-c}{\frac{b-c}{2}} \right) \left( \frac{bc+1}{2} \right)$$$$ID : y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $$
\par
\begin{flushleft}
Note that, $AC \perp EI$, $AB \perp IF$ and $BC \perp ID$
\end{flushleft}
\par
\begin{flushleft}
We'll use the famous formula from coordinate geometry to find out the slope of line when the coordinates of two points lying on the line are given, The formula is as follows:
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 2}}: If $X \equiv (x_1,y_1)$ and $Y \equiv (x_2,y_2)$ and Let $m_{XY}$ represent the slope of the line $XY$, then,
$$m_{XY}=\frac{y_1-y_2}{x_1-x_2}$$\end{flushleft}
\textbf{\underline{Slope for IF}}: The coordinate for $I \equiv \left(\frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $F \equiv (b,0)$
$$m_{IF}=\frac{\frac{bc+1}{2}-0}{\frac{b+c}{2}-b}$$$$m_{IF}=\frac{bc+1}{c-b}$$
\textbf{\underline{Slope for IE}}: The coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $E \equiv (0,1)$
$$m_{IE}=\frac{\frac{bc+1}{2} -1}{\frac{b+c}{2}-0}$$$$m_{IE}=\frac{bc-1}{b+c}$$
\textbf{\underline{Slope for ID}}: The coordinate for $I \equiv \left( \frac{b+c}{2} , \frac{bc+1}{2} \right)$ and $D \equiv (c,0)$
$$m_{ID}=\frac{\frac{bc+1}{2}-0}{\frac{b+c}{2}-c}$$$$m_{ID}=\frac{bc+1}{b-c}$$
\begin{flushleft}
We'll state another famous result from coordinate geometry
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 3}}: If $X_1Y_1$ and $X_2Y_2$ are perpendicular to each other, then,
$$m_{X_1Y_1} \cdot m_{X_2Y_2}=-1$$\par
\end{flushleft}
\par
\textbf{\underline{Slope for AB}}: Applying Formula 3
$$m_{AB}=\frac{b-c}{bc+1}$$
\textbf{\underline{Slope for BC}}: Applying Formula 3
$$m_{BC}=\frac{c-b}{bc+1}$$
\textbf{\underline{Slope for AC}}: Applying Formula 3
$$m_{AC}=\frac{-(b+c)}{bc-1}$$
\begin{flushleft}
We'll state another well known formula from coordinate geometry to find out the equation of line when the coordinates for a point lying on the line and the slope of line is given
\par
\end{flushleft}
\par
\begin{flushleft}
\textbf{\underline{Formula 4}}: If $X_1 \equiv (x_1,y_1)$ lies on $\ell$ and $m_{\ell}$ is the slope of $\ell$, then,
$$\ell : y-y_1=m_{\ell} (x-x_1)$$\end{flushleft}
\textbf{\underline{Equation for line AB}}: $F$ lies on $AB$ and $F \equiv (b,0)$ Hence,
$$AB: y-0=\left( \frac{b-c}{bc+1} \right) (x-b)$$$$AB: y=\left( \frac{b-c}{bc+1} \right) (x-b)$$
\textbf{\underline{Equation for line BC}}: $D$ lies on $BC$ and $D \equiv (c,0)$
$$BC: y-0=\left( \frac{c-b}{bc+1} \right) (x-c)$$$$BC: y=\left( \frac{c-b}{bc+1} \right) (x-c)$$
\textbf{\underline{Equation for line AC}}: $E$ lies on $AC$ and $E \equiv (0,1)$
$$AC: y-1=\frac{-(b+c)}{bc-1} (x-0)$$$$AC: y=1-x\left( \frac{b+c}{bc-1} \right)$$
\textbf{\underline{Coordinate for X}}: now recall that $H_1$ is the feet of perpendicular from $E$ to $DF$ and $EH_1 \cap BC=X$ and also, $EH_1$ is the y-axis, and hence, x- coordinate for $X$ is $0$ $\Longrightarrow$ $X \equiv (0,y)$ and since, $X \in BC$, we have,
$$BC:y=\left( \frac{c-b}{bc+1} \right) (x-c)$$$$y=-c \left( \frac{c-b}{bc+1} \right)$$$$y=\frac{bc-c^2}{bc+1}$$$$\Longrightarrow X \equiv \left( 0, \frac{bc-c^2}{bc+1} \right)$$
\textbf{\underline{Equation for line DE}}: Recall, $D \equiv (c,0)$ and $E \equiv (0,1)$, Hence, using Formula 1,
$$DE:\frac{y-0}{1-0}=\frac{x-c}{0-c}$$$$DE: y=1-\frac{x}{c}$$
\textbf{\underline{Equation for line EF}}: Recall, $E \equiv (0,1)$ and $F \equiv (b,0)$, Hence, using Formula 1,
$$EF: \frac{y-0}{1-0}=\frac{x-b}{0-b}$$$$EF: y=1-\frac{x}{b}$$
\textbf{\underline{Slope for DE}}: $D \equiv (c,0)$ and $E \equiv (0,1)$,
$$m_{DE}=\frac{0-1}{c-0}$$$$m_{DE}=\frac{-1}{c}$$
\textbf{\underline{Equation for line $FH_2$}}: $F \equiv (b,0)$ Notice, $FH_2 \perp ED$, hence,
$$m_{FH_2} \cdot m_{DE}=-1$$$$m_{FH_2}=c$$And since, $F$ lies on $FH_2$, therefore,
$$FH_2 : y-0=c(x-b)$$$$FH_2 : y=c(x-b)$$
\textbf{\underline{Coordinate for Y}}: Recall $FH_2 \cap BC=Y$, we have, $FH_2 : y=c(x-b)$ and $BC: y=\left( \frac{c-b}{bc+1} \right) (x-c)$, Hence, solving equations: should yield coordinates for $Y$
$$FH_2 : y=c(x-b) -----(1)$$$$BC: y=\left( \frac{c-b}{bc+1} \right) (x-c) ------(2)$$
Equating $(1)$ and $(2)$, we have,
$$c(x-b)=\frac{(c-b)(x-c)}{bc+1}$$$$\frac{1}{bc+1}=\frac{c(x-b)}{(c-b)(x-c)}=\frac{cx-bc}{cx+bc-bx-c^2}$$$$cx+bc-bx-c^2=(cx-bc)(bc+1)$$$$cx+bc-bx-c^2=bc^2x+cx-b^2c^2-bc$$$$2bc-c^2-bx=bc^2x-b^2c^2$$$$2bc-c^2+b^2c^2=bc^2x+bx$$$$x=\frac{2bc-c^2+b^2c^2}{b(c^2+1)}$$
and,
$$y=c(x-b)$$$$y=c \left( \frac{2bc-c^2+b^2c^2}{b(c^2+1)} -b \right)$$$$y=c \left( \frac{2bc-c^2+b^2c^2-b^2c^2-b^2}{bc^2+b} \right)$$$$y=\frac{-c(b-c)^2}{bc^2+b}$$
Hence,
$$Y \equiv \left( \frac{2bc+b^2c^2-c^2}{b(c^2+1)} , \frac{-c(b-c)^2}{b(c^2+1)} \right)$$
\par
\begin{flushleft}
Let $D^*$ be a point diametrically opposite to $D$ on $\omega$, or inshort, Let $D^*$ be the $D-$antipode in $\omega$, hence, $\angle D^*FD=\angle EH_1D=90^{\circ}$ $\Longrightarrow$ $FD^*||EH_1$ $$\Longrightarrow D^* \equiv (b,y)$$and since, $D^* \in ID$ and $ID:y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $
$$y=x \left( \frac{bc+1}{b-c} \right) -\frac{c(bc+1)}{b-c} $$$$y=(x-c) \left( \frac{bc+1}{b-c} \right) $$$$y=(b-c) \left( \frac{bc+1}{b-c} \right)$$$$y=bc+1$$Hence,
$$D^* \equiv (b,bc+1)$$\par
\end{flushleft}
\par
\textbf{\underline{Coordinate for A}}:Recall, $AB \cap AC=A$
$$AB: y=\left( \frac{b-c}{bc+1} \right) (x-b)$$$$AC:y=1-x\left( \frac{b+c}{bc-1} \right)$$
$$\left( \frac{b-c}{bc+1} \right) (x-b)=1-x\left( \frac{b+c}{bc-1} \right)$$$$\frac{bc-1}{bc+1}=\frac{(bc-1)-x(b+c)}{(b-c)(x-b)}$$$$(b-c)(x-b)(bc-1)=(bc+1)(bc-1)-x(b+c)(bc+1)$$$$(b^2c-bc^2-b+c)(x-b)=b^2c^2-1-(b^2c+b+bc^2+c)x$$$$b^2c^2-1-(b^2c+b+bc^2+c)x=x(b^2c-bc^2-b+c) -b(b^2c-bc^2-b+c)$$$$b^2c^2-1+b(b^2c-bc^2-b+c)=x(b^2c-bc^2-b+c+b^2c+b+c+bc^2)$$$$b^2c^2-1+b^3c-b^2c^2-b^2+bc=x(2b^2c+2c)$$$$b^3c-b^2+bc-1=x(2b^2c+2c)$$$$(bc-1)(b^2+1)=x(2c)(b^2+1)$$$$x=\frac{bc-1}{2c}$$And,
$$y=1-x\left( \frac{b+c}{bc-1} \right)$$$$y=1-\frac{b+c}{2c}$$$$y=\frac{c-b}{2c}$$Hence,
$$A \equiv \left( \frac{bc-1}{2c} , \frac{c-b}{2c} \right) $$
\textbf{\underline{Equation for line AD}}: Recall, $D \equiv (c,0)$
$$AD: \frac{y-0}{\frac{c-b}{2c}-0}=\frac{x-c}{\frac{bc-1}{2c}-c}$$$$AD: y=\frac{x-c}{\frac{bc-1-2c^2}{2c}} \left(\frac{c-b}{2c} \right)$$$$AD: y =\frac{(x-c)(c-b)}{bc-1-2c^2}$$\par
\begin{flushleft}
Recall $AZ \cap EF=K$, but since, $Z \in AD$, hence, $AD \cap EF=K$
\par
\end{flushleft}
\par
\textbf{\underline{Coordinate for K}}: Recall, $AD \cap EF=K$, We have,
$$AD: y =\frac{(x-c)(c-b)}{bc-1-2c^2}$$$$EF: y=1-\frac{x}{b}$$
Hence,
$$1-\frac{x}{b}=\frac{(x-c)(c-b)}{bc-1-2c^2}$$
$$1-\frac{x}{b}=\frac{x(c-b)}{bc-1-2c^2} +\frac{c(b-c)}{bc-1-2c^2}$$$$1-\frac{(bc-c^2)}{bc-1-12c^2}=\frac{x}{b}+\frac{x(c-b)}{bc-1-2c^2}$$$$\frac{bc-1-2c^2-bc+c^2}{bc-1-2c^2}=\frac{x(bc-1-2c^2+bc-b^2)}{b(bc-1-2c^2)}$$$$\frac{-(c^2+1)}{bc-1-2c^2}=\frac{x(2bc-1-2c^2-b^2)}{b(bc-1-2c^2}$$$$x=\frac{-b(c^2+1)}{2bc-1-2c^2-b^2}$$$$x=\frac{b(c^2+1)}{2c^2+b^2+1-2bc}$$And,
$$y=1-\frac{x}{b}$$$$y=1-\frac{b(c^2+1)}{b(2c^2+b^2+1-2bc)}$$$$y=\frac{2c^2+b^2+1-2bc-c^2-1}{2c^2+b^2+1-2bc}$$$$y=\frac{(b-c)^2}{2c^2+b^2+1-2bc}$$Hence,
$$K \equiv \left( \frac{b(c^2+1)}{2c^2+b^2+1-2bc} , \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)$$\par
\textbf{\underline{Coodinate for Z}}: Note, that, since, $DD^*$ is the diameter of $\omega$, hence, $ZD^* \perp ZD$ or $ZD^* \perp AD$, therefore,
$$m_{ZD^*} \cdot m_{AD}=-1$$Now we have eariler found out that,
$$AD: y=\frac{(x-c)(c-b)}{bc-1-2c^2}$$$$AD:y=\frac{x(c-b)}{bc-1-2c^2} -\frac{c(b-c)}{bc-1-2c^2}$$We know that equation of a line can be represented in the form of $y=mx+b$, where $m$ is the slope of the line and $b$ is the $y-$intercept, hence using this we get,
$$m_{AD}=\frac{(c-b)}{bc-1-2c^2}$$
Hence,
$$ m_{ZD^*}=\frac{-1}{m_{AD}}=\frac{-1}{\frac{c-b}{bc-1-2c^2}}$$
$$m_{ZD^*}=\frac{2c^2+1-bc}{c-b}$$Let $Z \equiv (x',y')$ and recall that $D^* \equiv (b,bc+1)$, hence ,we can find equation of $ZD^*$,
$$ZD^*: \frac{y-y'}{bc+1-y'}=\frac{x-x'}{b-x'}$$$$ZD^*:y=y'+\left( \frac{x-x'}{b-x'} \right) (bc+1-y')$$Using the earier we stated that, any line can be written in the form of $y=mx+b$, so using this,
$$m_{ZD^*}=\frac{bc+1-y'}{b-x'}$$but, we eariler found out that,
$$m_{ZD^*}=\frac{2c^2+1-bc}{c-b}$$$$\Longrightarrow \frac{2c^2+1-bc}{c-b}=\frac{bc+1-y'}{b-x'} ----(3)$$And, Since, $Z \in AD$,
$$AD: y=\frac{(x-c)(b-c)}{bc-1-2c^2}$$$$y'=\frac{(x-c)(b-c)}{bc-1-2c^2}----(4)$$Solving $(3)$ and $(4)$ should yield the coordinates for $Z$,
$$(3) \longrightarrow$$$$\frac{2c^2+1-bc}{c-b}=\frac{bc+1-y'}{b-x'}$$$$(2c^2+1-bc)(b-x')=(bc+1)(c-b)-y'(c-b)$$$$y'=\frac{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}{b-c} -----(5)$$
Therefore, dividing $(4)$ and $(5)$, we have,
$$\frac{y'}{y'}=\frac{\frac{(x'-c)(c-b)}{bc-1-2c^2}}{\frac{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}{b-c}}$$$$\frac{bc-1-2c^2}{b-c}=\frac{(x'-c)(c-b)}{(2c^2+1-bc)(b-x')+(bc+1)(b-c)}$$$$\frac{bc-1-2c^2}{b-c}=\frac{x'(c-b) +bc-c^2}{2bc^2+b-b^2c-x'(2c^2+1-bc)+b^2c+b-bc^2-c}$$$$\frac{bc-1-2c^2}{b-c}=\frac{x'(c-b) +bc-c^2}{bc^2+2b-c-x'(2c^2+1-bc)}$$$$(bc-1-2c^2)(bc^2+2b-c-x'(2c^2+1-bc))=x'(c-b)(b-c)+(bc-c^2)(b-c)$$$$(bc-1-2c^2)(bc^2+2b-c)+x'(bc-1-2c^2)^2=c(b-c)^2-x'(b-c)^2$$$$b^2c^3+2b^2c-bc^2-bc^2-2b+c-2bc^4-4bc^2+2c^3+x'(bc-1-2c^2)^2=b^2c-2bc^2+c^3-x'(b-c)^2$$$$b^2c^3+2b^2c-bc^2-bc^2-2b+c-2bc^4-4bc^2+2c^3-b^2c+2bc^2-c^3=-x'((b-c)^2+(bc-1-2c^2))$$$$(b^2c-2bc^2-2b+c)(c^2+1)=-x'(b^2-2bc+c^2+b^2c^2+1+4c^4-2bc+4c^2-4bc^3)$$$$(b^2c-2bc^2-2b+c)(c^2+1)=-x'((c^2+1)(b^2-4bc+4c^2+1))$$$$x' \equiv - \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right)$$
And, Since, as above stated,
$$y'=\frac{(x'-c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{(-(\frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1})-c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{-(\frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} +c)(c-b)}{bc-1-2c^2}$$$$y'=\frac{(\frac{b^2c-2bc^2-2b+c+b^2c-4bc^2+4c^3+c}{b^2-4bc+4c^2+1})(b-c)}{bc-1-2c^2}$$$$y'=\frac{2(b-c)(bc-1-2c^2)(b-c)}{(bc-1-2c^2)(b^2-4bc+4c^2+1)}$$$$y' \equiv \frac{2(b-c)^2}{b^2-4bc+4c^2+1}$$Hence, Combining we have the coordinates for $Z$
$$Z \equiv \left( - \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right) , \left( \frac{2(b-c)^2}{b^2-4bc+4c^2+1} \right) \right)$$
\par
\textbf{\underline{Equation for line $ZD^*$ }}: Recall, $D^* \equiv (b,bc+1)$ and we have found out the coordinate for $Z$ above, Hence,
$$ZD^* : \frac{y-(bc+1)}{\frac{2(b-c)^2}{b^2-4bc+4c^2+1} -(bc+1)}=\frac{x-b}{- \left( \frac{b^2c-2bc^2-2b+c}{b^2-4bc+4c^2+1} \right) -b}$$$$ZD^*: \frac{y-(bc+1)}{2(b-c)^2-(bc+1)(b^2-4bc+4c^2+1)}=\frac{x-b}{-(b^2c-2bc^2-2b+c+b^3-4b^2c+4bc^2+b)}$$$$ZD^*: \frac{y-(bc+1)}{-(b^2-2bc-1)(bc-2c^2-1)}=\frac{x-b}{-(b-c)(b^2-2bc-1)}$$
$$ZD^*: y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$
\par
\textbf{\underline{Equation for line AX}}: Recall, $A \equiv \left( \frac{bc-1}{2c} , \frac{c-b}{2c} \right)$ and $X \equiv \left( 0, \frac{bc-c^2}{bc+1} \right) $, Hence,
$$AX: \frac{y- \frac{c-b}{2c}}{\frac{bc-c^2}{bc+1}-(\frac{c-b}{2c})}=\frac{x-\frac{bc-1}{2c}}{0-(\frac{bc-1}{2c})}$$$$AX: \frac{y-\frac{c-b}{2c}}{\frac{(bc-c^2)(2c)-(c-b)(bc+1)}{(bc+1)(2c)}} =\frac{x-(\frac{bc-1}{2c})}{-(\frac{bc-1}{2c})}$$$$AX: \frac{y-(\frac{c-b}{2c})}{\frac{b^2c+bc^2+b-2c^3-c}{bc+1}}=\frac{x-(\frac{bc-1}{2c})}{1-bc}$$$$AX: y-\left(\frac{c-b}{2c} \right)=\left( \frac{2cx-(bc-1)}{2c(1-bc)} \right) \left( \frac{b^2c+bc^2+b-2c^3-c)}{bc+1} \right)$$
$$AX: y=\frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)$$
\par
\textbf{\underline{Coordinate for L}}: Recall, that, $AX \cap ZD^*=L$
We have already found the equation for line $AX$ and line $ZD^*$, so now, we can find out the coordinates for $L$,
$$AX: y=\frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)$$$$ZD^*: y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$Equating $y$, we get,
$$\Longrightarrow \frac{c-b}{2c}- \left( \frac{(2cx-(bc-1))(b^2c+bc^2+b-2c^3-c)}{2c(b^2c^2-1)} \right)=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$$$\Longrightarrow -(b-c)^2(b^2c^2-1)-(2cx+1-bc)(b^2c+bc^2+b-2c^3-c)(b-c)$$$$=2c(bc+1)(b-c)(b^2c^2-1)+(2c)(bc-1-2c^2)(x-b)(b^2c^2-1)$$
$$\Longrightarrow -2b^3c^4x+4b^2c^5x-6c^3x-2cx-2b^3c^2x-2b^2cx+6bc^4x+6bc^2x-4c^5x+2b^2c^3x$$$$=2b^3c^3+2c^2+2b^3c^5-4bc+2b^2c^4+2b^2c^2-2bc^5-6bc^3+2c^4$$
$$\Longrightarrow -2c(c^2+1)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)x=2c(c^2+1)(bc-1)(b^2c+2b-c)$$$$\Longrightarrow x=\frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}$$
Now, we can use the value of $x$ to find out the value of $y$,
$$y=(bc+1)+\left(\frac{bc-2c^2-1}{b-c} \right) (x-b)$$$$y=\frac{(bc+1)(b-c) + (bc-2c^2-1)(x-b)}{b-c}$$$$y=\frac{(b^2-bc^2+b-c)+(bc-2c^2-1) \left(\frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}-b \right)}{b-c}$$$$y=\frac{(bc+1)(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)-(bc-2c^2-1)(b^4c-b^3c^2+b^3-2b^2c+bc^2-b+c)}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b^4c-4b^3c^2+2b^3+2b^2c^3-4b^2c+2bc^2}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b(b-c)^2(bc+1)}{(b-c)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}$$$$y=\frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}$$
\par
\par
$$L \equiv \left( \frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} , \frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right)$$
\par
\begin{flushleft}
Now we'll calculate the equation for $YK$
\end{flushleft}
\par
\textbf{\underline{Equation for line YK}}: Recall, $Y \equiv \left( \frac{2bc+b^2c^2-c^2}{b(c^2+1)} , \frac{-c(b-c)^2}{b(c^2+1)} \right)$ and \par $K \equiv \left( \frac{b(c^2+1)}{2c^2+b^2+1-2bc} , \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)$
Hence, we have,
$$YK : \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{-c(b-c)^2}{b(c^2+1)}-\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}=\frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{2bc+b^2c^2-c^2}{b(c^2+1)}-\left(\frac{b(c^2+1)}{2c^2+b^2+1-2bc}\right)} $$$$YK : \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}=\frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)} $$
Now if the coordinates of $L$ satisfy equation of $YK$, then we have indeed proved that $L$ lies on $YK$, so we'll do it by first computing the RHS and then LHS and then if RHS equals LHS, we're done with our claim, So here we go!, \par
\textbf{\underline{LHS}}:\par
$$\Longrightarrow \frac{y-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}$$$$\Longrightarrow \frac{\left( \frac{2b(b-c)(bc+1)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right)-\left( \frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}{\frac{c(b-c)^2}{b(c^2+1)}+\left(\frac{(b-c)^2}{2c^2+b^2+1-2bc} \right)}$$$$\Longrightarrow \frac{\frac{(b^2-2bc+2c^2+1)(2b^2-2bc)(bc+1)-(b-c)^2(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1)}}{\frac{c(b-c)^2(b^2-2bc+2c^2+1)+(b-c)^2(bc^2+b)}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$$$\Longrightarrow \frac{\frac{b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{(b-c)(b^2c-bc^2+b+2c^3+c)}{bc^2+b}}$$$$\Longrightarrow \frac{\frac{b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{b^3c-2b^2c^2+b^2+3bc^3-2c^4-c^2}{bc^2+b}} ------(6)$$
\par
\textbf{\underline{RHS}}: \par
$$\Longrightarrow \frac{x-\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)}$$$$\Longrightarrow \frac{\left( \frac{-(bc-1)(b^2c+2b-c)}{b^3c+b^2-2b^2c^2-3bc+2c^2+1} \right) -\frac{b(c^2+1)}{2c^2+b^2+1-2bc}}{\frac{b(c^2+1)}{2c^2+b^2+1-2bc}-\left(\frac{2bc+b^2c^2-c^2}{b(c^2+1)} \right)}$$$$\Longrightarrow \frac{- \left( \frac{(bc-1)(b^2+2b-c)(b^2-2bc+2c^2+1)+(bc^2+b)(b^3c+b^2-2b^2c^2-3bc+2c^2+1)}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1) } \right) }{\frac{(bc^2+b)^2-(2bc+b^2c^2-c^2)(b^2-2bc+2c^2+1)}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$
$$\Longrightarrow \frac{\frac{-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c}{(b^3c+b^2-2b^2c^2-3bc+2c^2+1)(b^2-2bc+2c^2+1)}}{\frac{-b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2}{(bc^2+b)(b^2-2bc+2c^2+1)}}$$$$\Longrightarrow \frac{\frac{-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c}{b^3c+b^2-2b^2c^2-3bc+2c^2+1}}{\frac{-b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2}{bc^2+b}} -----(7)$$\par
Now note that,
$$\left(-b^5c^2+b^4c^3-2b^4c+3b^3c^2+b^3-b^2c^3-3b^2c+4bc^2+b-2c^3-c \right) \cdot \left(b^3c-2b^2c^2+b^2+3bc^3-2c^4-c^2 \right) $$$$= -b^8c^3+3b^7c^4-3b^7c^2-5b^6c^5+8b^6c^3-b^6c+5b^5c^6-12b^5c^4-2b^5c^2+b^5-2b^4c^7+14b^4c^5+14b^4c^3-2b^4c$$$$-9b^3c^6-24b^3c^4+b^3+2b^2c^7+23b^2c^5+6b^2c^3-b^2c-14bc^6-9bc^4-bc^2+4c^7+4c^5+c^3$$$$=\left( b^4c-b^3c^2+b^3+2b^2c^3+2b^2c-bc^2+b+2c^3+c \right)$$$$ \cdot \left( -b^4c^2+2b^3c^3-2b^3c-b^2c^4+6b^2c^2+b^2-6bc^3-2bc+2c^4+c^2 \right)$$
So using this, ofcourse, $(6)$ and $(7)$ are equal, And Hence, $L$ lies on $KY$
Hence, our Claim is proved!! \par
\par
\begin{flushleft}
$\textbf{\underline{Back to the Main Problem}}$:From (Claim 1), Note, $ZFDE$ is harmonic quadrilateral, therefore,
$$-1=(D,Z;F,E) \stackrel{F}{=} (D,Z;A,K) \stackrel{L}{=} (D,G;X,Y)=(G,D;X,Y)$$Since, $DD^*$ is the diameter of $\omega$, hence, $\angle DZD^*=\angle DZG=90^{\circ}$ and since, $(G,D;X,Y)=-1$, hence from (Lemma 1), we have, $ZD$ is the angle bisector of $\angle XZY$, We'll state and prove Lemma 1 now,
$\textbf{\underline{Lemma 1}}$: Let $X,A,Y,B$ be four collinear points lying in the same order, and Let the four point be in such a manner that:
$\bullet$ ~~~ $-1=(X,Y;A,B)$
$\bullet$ ~~~ Let $C$ be any point not lying collinear to those 4 points, and such that, $\angle XCY=90^{\circ}$, \par
Then, $CY$ bisects $\angle ACB$
Draw $\ell$ parallel to $XC$ through $Y$, then $CY \perp \ell$ and let $\ell \cap AC=P$ and $\ell \cap BC=Q$, then, $\Delta XAC \sim \Delta YAP$ and $\Delta XBC \sim \Delta YBQ$ gives us,
$$\frac{AX}{XC}=\frac{AY}{PY} -----(i)$$And,
$$\frac{BX}{XC}=\frac{BY}{YQ} -----(ii)$$and, $$-1=(X,Y;A,B) \Longrightarrow \frac{AX}{AY}=\frac{BX}{BY} ------(iii)$$Hence, using $(i), (ii), (iii)$, it's easy to get,
$$YP=YQ \Longrightarrow \angle ACY=\angle BCA$$Hence, $CY$ is the angle bisector of $\angle ACB$
Hence we're completed with the proof of our Lemma!!
Let $XZ \cap (I)=X_1$ and $YZ \cap (I) =Y_1$, Recall that earlier we had derived that, $(G,D;X,Y)=-1$ and $\angle DZG=90^{\circ}$, hence applying Lemma 1, we get that $ZD$ is the angle bisector of $\angle XZY$ or $\angle XZD=\angle YZD$, now,
$$\angle YZD=\angle XZD=\angle X_1D^*D=90^{\circ}-\angle X_1DD^*=\angle X_1DX $$Hence, $X_1Y_1||XY$, hence $\Delta ZX_1Y_1$ and $\Delta ZXY$, hence their circumcircles are tangent at $Z$
You are great
My ^'greatNESS' will be drained down the gutter If I get a $0$ for this one
Edit: AND lol...I indeed got a zero on this problem...even though I'm sure my bash is correct
Very easy problem to be honest.
Vrangr wrote:
The incircle $\omega$ of triangle $ABC$ touches the sides $BC$, $CA$ and $AB$ at points $D$, $E$ and $F$ respectively. The perpendicular from $E$ to $DF$ meets $BC$ at point $X$, and the perpendicular from $F$ to $DE$ meets $BC$ at point $Y$. The segment $AD$ meets $\omega$ for the second time at point $Z$. Prove that the circumcircle of the triangle $XYZ$ touches $\omega$.
Solution. After inversion around $D,$ the problem turns into the following, (see attachment, I am not changing labels after inversion) Note that,
\[\angle YFE=\angle YFK-\angle EFK=\angle YDK-(90^{\circ}-\angle F)=\angle E+\angle F-90^{\circ}\]The above is symmetric in $\angle E$ and $\angle F$ therefore $\angle YFE=\angle XEF.$ Now as $EF\parallel XY,$ it is evident that $XYEF$ is an isosceles trapezium. Therefore, because of symmetry $YZ=XZ,$ so as $EF\parallel XY,$ it must be true that circumcircle of $\triangle XYZ$ is tangent to $EF.$ $~~~~\blacksquare$
Same as above, $XEFY$ is cyclic. Let $EF$ meet $BC$ at $S$, using polars we find out that $S$ lies on the tangent line to incircle at $Z$. Using power of point $S$ Wrt to incircle of $ABC$, circumcircle of $XYZ$ and circumcircle of $XEFY$ we get that incircle of $ABC$ and circumcircle of $XYZ$ are tangent.
Probably stated already but hers my solution.
By some easy angle chasing we get that $EFXY$ is cyclic. Now let the tangent at $Z$ meet $BC$ at $G$. Clearly the polar of $Z$ is $ZD \equiv AD$ and hence $A$ lies on the polar of $G$ or by la-hires $G$ lies on polar of $A \implies \overline{G-E-F}$ collinear.Now applying radical axis theorem onto $\odot(EFXY),\odot(XYZ),\omega$ we get that $GZ$ is radical axis of $\omega,\odot(XYZ)\implies GZ$ tangent to $\odot(XYZ)$. Done $\blacksquare$.
Let $l \cap BC=T$, $l\cap AB=P$, and $l \cap CA=Q$ where $l$ is the tangent of $\omega$ at $Z$. By Newton's theorem, $CP, BQ, AD, EF$ are concurrent at a point $R$, so $APBXCEA$ is a complete quadrilateral, so $CDBT$ is a harmonic range of points. Similarly, $CF, EB, AD$ are concurrent at the ... point of $\triangle DEF$, $S$. If $FE \cap BC=T'$, then, $AFBYCEA$ is a complete quadrilateral, and $CDBG'$ form a harmonic range of points with the same orientation as $CDBG$, so $T=T'$, ad $ZT, EF, BC$ intersect at $T$. Therefore, to prove $TZ^2=TF \times TE=TX \times TY$ (by POP), it suffices to prove, quadrilateral $XFEY$ is cyclic.
$\angle YXE= 90^{\circ}-\angle FDX= 90^{\circ}- \angle FED= \angle YFE$ so $XFEY$ is cyclic.
Let $I$ be the incenter of $\triangle ABC$, and let lines $EF$ and $BC$ meet at $T$. Remark that $ZDEF$ is harmonic, so $\overline{TZ}$ is tangent to $\omega$.
Claim: $EFXY$ cyclic.
Proof: Let $H$ be the orthocenter of $\triangle DEF$, and let $P$ and $Q$ be the foot of the perpendiculars from $H$ to $\overline{DF}$ and $\overline{DE}$, respectively. Note that as both $\overline{XY}$ and $\overline{PQ}$ are perpendicular to $\overline{ID}$, we find that $\overline{PQ} \parallel \overline{XY}$. Remark that $EFPQ$ is cyclic, so $$EH \cdot XH = EH \cdot PH \left(\frac{HP}{HX} \right) = FH \cdot QH \left(\frac{HQ}{HY} \right) = FH \cdot YH,$$as desired.
Now $TZ^2 = TE \cdot TF = TX \cdot TY$, as desired.