Problem

Source: Kosovo MO 2019 Grade 12, Problem 4

Tags: geometry, circumcircle



Let $ABC$ be an acute triagnle with its circumcircle $\omega$. Let point $D$ be the foot of triangle $ABC$ from point $A$. Let points $E,F$ be midpoints of sides $AB,AC$, respectively. Let points $P$ and $Q$ be the second intersections of of circle $\omega$ with circumcircle of triangles $BDE$ and $CDF$, respectively. Suppose that $A,P,B,Q$ and $C$ be on a circle in this order. Show that the lines $EF,BQ$ and $CP$ are concurrent.