Let $$ 2^{-n_1}+2^{-n_2}+2^{-n_3}+\cdots,\quad1\le n_1\le n_2\le n_3\le\cdots $$be the binary representation of the golden ratio minus one. Prove that $ n_k\le 2^{k-1}-2, $ for all integers $ k\ge 4. $ American Mathematical Monthly
Source: Stars of Mathematics 2017, Seniors, Problem 3
Tags: number theory
Let $$ 2^{-n_1}+2^{-n_2}+2^{-n_3}+\cdots,\quad1\le n_1\le n_2\le n_3\le\cdots $$be the binary representation of the golden ratio minus one. Prove that $ n_k\le 2^{k-1}-2, $ for all integers $ k\ge 4. $ American Mathematical Monthly