Problem

Source: 2019 Slovenia 1st TST Problem 5

Tags: TST, geometry



Let $ABC$ be a triangle and $D, E$ and $F$ the foots of heights from $A, B$ and $C$ respectively. Let $D_1$ be such a point on $EF$, that $DF = D_1 E$ where $E$ is between $D_1$ and $F$. Similarly, let $D_2$ be such a point on $EF$, that $DE = D_2 F$ where $F$ is between $E$ and $D_2$. Let the bisector of $DD_1$ intersect $AB$ at $P$ and let the bisector of $DD_2$ intersect $AC$ at $Q$. Prove that, $PQ$ bisects $BC$.