Problem

Source: 2019 Slovenia 1st TST Problem 4

Tags: TST, number theory



Let $P$ be the set of all prime numbers. Let $A$ be some subset of $P$ that has at least two elements. Let's say that for every positive integer $n$ the following statement holds: If we take $n$ different elements $p_1,p_2...p_n \in A$, every prime number that divides $p_1 p_2 \cdots p_n-1$ is also an element of $A$. Prove, that $A$ contains all prime numbers.