Problem

Source: 2019 Slovenia 1st TST P1

Tags: TST, geometry



Let $ABC$ be a non-right isosceles triangle such that $AC = BC$. Let $D$ be such a point on the perpendicular bisector of $AB$, that $AD$ is tangent on the $ABC$ circumcircle. Let $E$ be such a point on $AB$, that $CE$ and $AD$ are perpendicular and let $F$ be the second intersection of line $AC$ and the circle $CDE$. Prove that $DF$ and $AB$ are parallel.