Let $ ABCD$ be an inscribed quadrilateral and let $ E$ be the midpoint of the diagonal $ BD$. Let $ \Gamma_1,\Gamma_2,\Gamma_3,\Gamma_4$ be the circumcircles of triangles $ AEB$, $ BEC$, $ CED$ and $ DEA$ respectively. Prove that if $ \Gamma_4$ is tangent to the line $ CD$, then $ \Gamma_1,\Gamma_2,\Gamma_3$ are tangent to the lines $ BC,AB,AD$ respectively.
Problem
Source: inscribed quadrilateral and 4 other circles tangent to its sides
Tags: geometry, circumcircle, parallelogram, geometry proposed