Problem

Source: USA Team Selection Test 2007, Problem 5

Tags: geometry, circumcircle, trigonometry, geometric transformation, reflection, symmetry, Miquel point



Triangle $ ABC$ is inscribed in circle $ \omega$. The tangent lines to $ \omega$ at $ B$ and $ C$ meet at $ T$. Point $ S$ lies on ray $ BC$ such that $ AS \perp AT$. Points $ B_1$ and $ C_1$ lie on ray $ ST$ (with $ C_1$ in between $ B_1$ and $ S$) such that $ B_1T = BT = C_1T$. Prove that triangles $ ABC$ and $ AB_1C_1$ are similar to each other.