Problem

Source: USA Team Selection Test 2007

Tags: Asymptote, geometry, geometric transformation, geometry proposed



Circles $ \omega_1$ and $ \omega_2$ meet at $ P$ and $ Q$. Segments $ AC$ and $ BD$ are chords of $ \omega_1$ and $ \omega_2$ respectively, such that segment $ AB$ and ray $ CD$ meet at $ P$. Ray $ BD$ and segment $ AC$ meet at $ X$. Point $ Y$ lies on $ \omega_1$ such that $ PY \parallel BD$. Point $ Z$ lies on $ \omega_2$ such that $ PZ \parallel AC$. Prove that points $ Q,X,Y,Z$ are collinear.