Problem

Source: INAMO 2015 Shortlist C9

Tags: combinatorics, Game Theory



Given 2015 balls. Astri and Budi will play a game. At first, Astri will choose two different numbers $a$ and $b$ from the set $S = \{ 1, 2, 3, \dots, 30 \}$. Budi will then choose another 2 different numbers $c$ and $d$ from the remaining 28 numbers in set $S$. By taking turns, starting from Astri, they take balls with the following rules: (1) Astri could only take $a$ or $b$ balls. (2) Budi could only take $c$ or $d$ balls. until someone couldn't take any balls satisfying the condition given (and that person will lose). Prove that Budi could choose $c,d$ such that he has a strategy to ensure his victory on this game.