Problem

Source: INAMO 2015 Shortlist A6 ; INAMO 2015 Problem 04

Tags: algebra, functional equation, function



Let functions $f, g: \mathbb{R}^+ \to \mathbb{R}^+$ satisfy the following: \[ f(g(x)y + f(x)) = (y+2015)f(x) \]for every $x,y \in \mathbb{R}^+$. (a) Prove that $g(x) = \frac{f(x)}{2015}$ for every $x \in \mathbb{R}^+. $ (b) State an example of function that satisfy the equation above and $f(x), g(x) \ge 1$ for every $x \in \mathbb{R}^+$.