Problem

Source: 7th European Mathematical Cup , Senior Category , Q2

Tags: geometry



Let ABC be a triangle with$|AB|< |AC|. $ Let $k$ be the circumcircle of $\triangle ABC$ and let $O$ be the center of $k$. Point $M$ is the midpoint of the arc $BC $ of $k$ not containing $A$. Let $D $ be the second intersection of the perpendicular line from $M$ to $AB$ with $ k$ and $E$ be the second intersection of the perpendicular line from $M$ to $AC $ with $k$. Points $X $and $Y $ are the intersections of $CD$ and $BE$ with $OM$ respectively. Denote by $k_b$ and $k_c$ circumcircles of triangles $BDX$ and $CEY$ respectively. Let $G$ and $H$ be the second intersections of $k_b$ and $k_c $ with $AB$ and $AC$ respectively. Denote by ka the circumcircle of triangle $AGH.$ Prove that $O$ is the circumcenter of $\triangle O_aO_bO_c, $where $O_a, O_b, O_c $ are the centers of $k_a, k_b, k_c$ respectively.