A convex $n$-gon $P$, where $n > 3$, is dissected into equal triangles by diagonals non-intersecting inside it. Which values of $n$ are possible, if $P$ is circumscribed?
Source: Sharygin 2011 Final 9.8
Tags: geometry, diagonals, convex polygon, circumcircle
A convex $n$-gon $P$, where $n > 3$, is dissected into equal triangles by diagonals non-intersecting inside it. Which values of $n$ are possible, if $P$ is circumscribed?