Problem

Source: Sharygin 2011 Final 9.7

Tags: geometry, equal segments, circles, angle, common tangents



Circles $\omega$ and $\Omega$ are inscribed into the same angle. Line $\ell$ meets the sides of angles, $\omega$ and $\Omega$ in points $A$ and $F, B$ and $C, D$ and $E$ respectively (the order of points on the line is $A,B,C,D,E, F$). It is known that$ BC = DE$. Prove that $AB = EF$.