Problem

Source: Turkey National Mathematical Olympiad 2018

Tags: Sequences, algebra, number theory, Turkey, Mobius function



A sequence $a_1,a_2,\dots$ satisfy $$ \sum_{i =1}^n a_{\lfloor \frac{n}{i}\rfloor }=n^{10}, $$for every $n\in\mathbb{N}$. Let $c$ be a positive integer. Prove that, for every positive integer $n$, $$ \frac{c^{a_n}-c^{a_{n-1}}}{n} $$is an integer.