Find all pairs $(x,y)$ of real numbers that satisfy, \begin{align*} x^2+y^2+x+y &= xy(x+y)-\frac{10}{27}\\ |xy| & \leq \frac{25}{9}. \end{align*}
Problem
Source: Turkey National Mathematical Olympiad 2018
Tags: inequalities, algebra, system of equations
02.12.2018 23:13
Is this a TST?
02.12.2018 23:16
Second round. Approximately ~20-25 kids are selected in the second round, and they will be administered the TST in April 2019.
02.12.2018 23:49
.
03.12.2018 16:48
Denote $t=x+y$ so $$|xy| \leq \frac{25}{9}\Longleftrightarrow -\frac{25}{9}\le \frac{t^2+t+\frac{10}{27}}{t+2}\le\frac{25}{9}\Longleftrightarrow -\frac{14}{9}\le t\le \frac{10}{3}$$On other hand $$xy=\frac{(x+y)^2-(x-y)^2}{4}\Longrightarrow \frac{t^2}{4}\ge\frac{t^2+t+\frac{10}{27}}{t+2}\Longleftrightarrow\frac{(3t-10)(3t+2)^2}{t+2}\ge0\Longrightarrow$$$$ t\in(-\infty , -2 ) \cup \left\{-\frac23\right\}\cup\left[\frac{10}{3},\infty\right).$$So $t=-\frac23$ or $t=\frac{10}{3}$, in both cases $x=y$.
29.12.2021 13:35
See that $x+y\neq 2$. Let $a=xy$ and $b=x+y$. We know that $b^2\ge 4a$ and $b\neq 2$. Also; $$\frac{b^2+b+\frac{10}{27}}{b+2}=a\text{ and }|a|\leq \frac{25}9$$ If $b\ge \frac{10}3$, then $$a=\frac{b^2+b+\frac{10}{27}}{b+2}\ge \frac{25}{9}\ge a$$For equality, we need to have $(a,b)=\left(\frac{25}9, \frac{10}3\right)\Leftrightarrow (x,y)=\left(\frac 53, \frac 53\right)$. If $\frac{10}3>b>-2$, then $$a=\frac{b^2+b+\frac{10}{27}}{b+2}\ge \frac{b^2}4\ge a$$For equality, we need to have $(a,b)=\left(\frac 19, \frac{-2}3\right)\Leftrightarrow (x,y)=\left(\frac {-1}3, \frac {-1}3\right)$. If $b<-2$, then $$a=\frac{b^2+b+\frac{10}{27}}{b+2}<\frac{-25}{9}\leq a$$No solution here.
10.06.2024 13:59
A bit similar to BarisKoyuncu's Solution, but this solution have lesser classification.