Let $BH$ be an altitude of a right-angled triangle $ABC$ ($\angle B = 90^o$). The incircle of triangle $ABH$ touches $AB,AH$ in points $H_1, B_1$, the incircle of triangle $CBH$ touches $CB,CH$ in points $H_2, B_2$, point $O$ is the circumcenter of triangle $H_1BH_2$. Prove that $OB_1 = OB_2$.
Problem
Source: Sharygin 2010 Final 10.5
Tags: geometry, equal segments, right triangle, altitude, circumcircle