Problem

Source: ONEM 2017

Tags: algebra, rational number, Peru



The infinity sequence $r_{1},r_{2},...$ of rational numbers it satisfies that: $\prod_{i=1}^ {k}r_{i}=\sum_{i=1}^{k} r_{i}$. For all natural k. Show that $\frac{1}{r_{n}}-\frac{3}{4}$ is a square of rationale number for all natural $n\geq3$